AlgebraicIntegration(R, F)¶
intaf.spad line 708 [edit on github]
R: Join(Comparable, IntegralDomain)
F: Join(AlgebraicallyClosedField, FunctionSpace R)
This package provides functions for the integration of algebraic integrands over transcendental functions.
- algextint: (Kernel F, Kernel F, SparseUnivariatePolynomial F -> SparseUnivariatePolynomial F, List Fraction SparseUnivariatePolynomial F -> List Record(ratpart: Fraction SparseUnivariatePolynomial F, coeffs: Vector F), (Fraction SparseUnivariatePolynomial F, List Fraction SparseUnivariatePolynomial F) -> List Record(ratpart: Fraction SparseUnivariatePolynomial F, coeffs: Vector F), Matrix F -> List Vector F, List F) -> List Record(ratpart: F, coeffs: Vector F)
algextint(x, y, d, ext, rde, csolve, [g1, ..., gn])
returns[h, [c1, ..., cn]]
such thatf = dh/dx + sum(ci gi)
and dci/dx = 0, if such[h, [c1, ..., cn]]
exist, “failed” otherwise.
- algextint_base: (Kernel F, Kernel F, SparseUnivariatePolynomial F -> SparseUnivariatePolynomial F, Matrix F -> List Vector F, List F) -> List Record(ratpart: F, coeffs: Vector F)
algextint_base(x, y, d, csolve, [g1, ..., gn])
is like algextint but assumes thaty
andgi
-s
are purely algebraic
- algint: (F, Kernel F, Kernel F, SparseUnivariatePolynomial F -> SparseUnivariatePolynomial F, F -> IntegrationResult F) -> IntegrationResult F
algint(f, x, y, d)
returns the integral off(x, y)dx
wherey
is an algebraic function ofx
;d
is the derivation to use onk[x]
.