Coalgebra(R, MxM)ΒΆ
tensor.spad line 447 [edit on github]
- MxM: Module R 
A coalgebra A over a ring is an R-module with a coassociative comultiplication from A to the tensor product of A with itself and which possesses a counit.
- 0: %
- from AbelianMonoid 
- *: (%, R) -> %
- from RightModule R 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- *: (R, %) -> %
- from LeftModule R 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coproduct: % -> MxM
- coproduct(x)computes the coproduct of an element- x
- counit: % -> R
- counit(x)evaluates the counit at an element- x
- latex: % -> String
- from SetCategory 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- sample: %
- from AbelianMonoid 
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
- from AbelianMonoid 
BiModule(R, R)
Module R