Coalgebra(R, MxM)ΒΆ
tensor.spad line 447 [edit on github]
MxM: Module R
A coalgebra A over a ring is an R
-module with a coassociative comultiplication from A to the tensor product of A with itself and which possesses a counit.
- 0: %
from AbelianMonoid
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coproduct: % -> MxM
coproduct(x)
computes the coproduct of an elementx
- counit: % -> R
counit(x)
evaluates the counit at an elementx
- latex: % -> String
from SetCategory
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
from AbelianMonoid
BiModule(R, R)
Module R