DihedralGroup(n, a, b)ΒΆ
discrgrp.spad line 201 [edit on github]
DihedralGroup(n, a, b)
is the dihedral group generated by a rotation a of order n
and a reflection b
.
- 1: %
from MagmaWithUnit
- ^: (%, Integer) -> %
from Group
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- commutator: (%, %) -> %
from Group
- convert: % -> InputForm
from ConvertibleTo InputForm
- expa: % -> IntegerMod n
expa(x)
returns the exponent of the rotation a in the normal form ofx
- expb: % -> IntegerMod 2
expa(x)
returns the exponent of the reflectionb
in the normal form ofx
- exponenta: % -> Integer
exponenta(x)
returns the exponent of the rotation a in the normal form ofx
as integer
- exponentb: % -> Integer
exponentb(x)
returns the exponent of the reflectionb
in the normal form ofx
as integer
- generators: () -> List %
from FinitelyGenerated
- hash: % -> SingleInteger
from Hashable
- hashUpdate!: (HashState, %) -> HashState
from Hashable
- index: PositiveInteger -> %
from Finite
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- lookup: % -> PositiveInteger
from Finite
- one?: % -> Boolean
from MagmaWithUnit
- order: % -> Integer
from FiniteGroup
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from MagmaWithUnit
- size: () -> NonNegativeInteger
from Finite
- smaller?: (%, %) -> Boolean
from Comparable