Distribution R¶
distro.spad line 694 [edit on github]
Domain for distributions formally given by moments. moments and different kinds of cumulants are stored in streams and computed on demand.
- 0: %
from DistributionCategory R
- ^: (%, PositiveInteger) -> %
from DistributionCategory R
- booleanConvolution: (%, %) -> %
from DistributionCategory R
- booleanCumulant: (%, PositiveInteger) -> R
from DistributionCategory R
- booleanCumulantFromJacobi: (Integer, Sequence R, Sequence R) -> R
booleanCumulantFromJacobi(n, aa, bb)
computes then
th Boolean cumulant from the given Jacobiparametersaa
andbb
.
- booleanCumulants: % -> Sequence R
from DistributionCategory R
- classicalConvolution: (%, %) -> %
from DistributionCategory R
- classicalCumulant: (%, PositiveInteger) -> R
from DistributionCategory R
- classicalCumulants: % -> Sequence R
from DistributionCategory R
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- construct: (Sequence R, Sequence R, Sequence R, Sequence R) -> %
construct(mom, ccum, fcum, bcum)
constructs a distribution with momentsmom
, classical cumulantsccum
, free cumulantsfcum
and boolean cumulantsbcum
. The user must make sure that these are consistent, otherwise the results are unpredictable!
- distributionByBooleanCumulants: Sequence R -> %
distributionByBooleanCumulants(bb)
initiates a distribution with given Boolean cumulantsbb
.
- distributionByBooleanCumulants: Stream R -> %
distributionByBooleanCumulants(bb)
initiates a distribution with given Boolean cumulantsbb
.
- distributionByClassicalCumulants: Sequence R -> %
distributionByEvenMoments(kk)
initiates a distribution with given classical cumulantskk
.
- distributionByClassicalCumulants: Stream R -> %
distributionByEvenMoments(kk)
initiates a distribution with given classical cumulantskk
.
- distributionByEvenMoments: Sequence R -> %
distributionByEvenMoments(mm)
initiates a distribution with given even momentsmm
and odd moments zero.
- distributionByEvenMoments: Stream R -> %
distributionByEvenMoments(mm)
initiates a distribution with given even momentsmm
and odd moments zero.
- distributionByFreeCumulants: Sequence R -> %
distributionByFreeCumulants(cc)
initiates a distribution with given free cumulantscc
.
- distributionByFreeCumulants: Stream R -> %
distributionByFreeCumulants(cc)
initiates a distribution with given free cumulantscc
.
- distributionByJacobiParameters: (Sequence R, Sequence R) -> %
distributionByJacobiParameters(aa, bb)
initiates a distribution with given Jacobi parameters[aa, bb]
.
- distributionByJacobiParameters: (Stream R, Stream R) -> %
distributionByJacobiParameters(aa, bb)
initiates a distribution with given Jacobi parameters[aa, bb]
.
- distributionByMoments: Sequence R -> %
distributionByMoments(mm)
initiates a distribution with given momentsmm
.
- distributionByMoments: Stream R -> %
distributionByMoments(mm)
initiates a distribution with given momentsmm
.
- distributionByMonotoneCumulants: Sequence R -> % if R has Algebra Fraction Integer
distributionByMonotoneCumulants(hh)
initiates a distribution with given monotone cumulantshh
.
- distributionByMonotoneCumulants: Stream R -> % if R has Algebra Fraction Integer
distributionByMonotoneCumulants(hh)
initiates a distribution with given monotone cumulantshh
.
- distributionBySTransform: (Fraction Integer, Fraction Integer, Sequence R) -> % if R has Algebra Fraction Integer
distributionBySTransform(series)
initiates a distribution with givenS
-transformseries
.
- distributionBySTransform: Record(puiseux: Fraction Integer, laurent: Fraction Integer, coef: Sequence R) -> % if R has Algebra Fraction Integer
distributionBySTransform(series)
initiates a distribution with givenS
-transformseries
.
- freeConvolution: (%, %) -> %
from DistributionCategory R
- freeCumulant: (%, PositiveInteger) -> R
from DistributionCategory R
- freeCumulants: % -> Sequence R
from DistributionCategory R
- freeMultiplicativeConvolution: (%, %) -> % if R has Algebra Fraction Integer
freeMultiplicativeConvolution(mu, nu)
computes the free multiplicative convolution of the distributionsmu
andnu
.
- hankelDeterminants: % -> Stream R
from DistributionCategory R
- jacobiParameters: % -> Record(an: Stream Fraction R, bn: Stream Fraction R) if R has IntegralDomain and R hasn’t Field
from DistributionCategory R
- jacobiParameters: % -> Record(an: Stream R, bn: Stream R) if R has Field
from DistributionCategory R
- latex: % -> String
from SetCategory
- moment: (%, NonNegativeInteger) -> R
from DistributionCategory R
- moments: % -> Sequence R
from DistributionCategory R
- monotoneConvolution: (%, %) -> %
from DistributionCategory R
- monotoneCumulants: % -> Sequence R if R has Algebra Fraction Integer
from DistributionCategory R
- orthogonalConvolution: (%, %) -> %
from DistributionCategory R
- orthogonalPolynomials: % -> Stream SparseUnivariatePolynomial Fraction R if R has IntegralDomain and R hasn’t Field
from DistributionCategory R
- orthogonalPolynomials: % -> Stream SparseUnivariatePolynomial R if R has Field
from DistributionCategory R
- subordinationConvolution: (%, %) -> %
from DistributionCategory R