EigenPackage R¶
eigen.spad line 216 [edit on github]
R: GcdDomain
This is a package for the exact computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Eigenvalues not in base field are represented by their minimal polynomial.
- characteristicPolynomial: (Matrix Fraction Polynomial R, Symbol) -> Polynomial R
characteristicPolynomial(m, var)
returns the characteristicPolynomial of the matrixm
using the symbol var as the main variable.
- characteristicPolynomial: Matrix Fraction Polynomial R -> Polynomial R
characteristicPolynomial(m)
returns the characteristicPolynomial of the matrixm
using a new generated symbol symbol as the main variable.
- eigenvalues: Matrix Fraction Polynomial R -> List Union(Fraction Polynomial R, SuchThat(Symbol, Polynomial R)) if R has PolynomialFactorizationExplicit
eigenvalues(m)
returns the eigenvalues of the matrixm
.
- eigenvector: (Union(Fraction Polynomial R, SuchThat(Symbol, Polynomial R)), Matrix Fraction Polynomial R) -> List Matrix Fraction Polynomial R
eigenvector(eigval, m)
returns the eigenvectors belonging to the eigenvalueeigval
for the matrixm
.
- eigenvectors: Matrix Fraction Polynomial R -> List Record(eigval: Union(Fraction Polynomial R, SuchThat(Symbol, Polynomial R)), eigmult: NonNegativeInteger, eigvec: List Matrix Fraction Polynomial R) if R has PolynomialFactorizationExplicit
eigenvectors(m)
returns the eigenvalues and eigenvectors for the matrixm
. The eigenvalues in base field and the corresponding eigenvectors are explicitly computed, while the other ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a “generic” root of such a polynomial.
- generalizedEigenvector: (Record(eigval: Union(Fraction Polynomial R, SuchThat(Symbol, Polynomial R)), eigmult: NonNegativeInteger, eigvec: List Matrix Fraction Polynomial R), Matrix Fraction Polynomial R) -> List Matrix Fraction Polynomial R
generalizedEigenvector(eigen, m)
returns the generalized eigenvectors of the matrix relative to the eigenvalueeigen
, as returned by the function eigenvectors.
- generalizedEigenvector: (Union(Fraction Polynomial R, SuchThat(Symbol, Polynomial R)), Matrix Fraction Polynomial R, NonNegativeInteger, NonNegativeInteger) -> List Matrix Fraction Polynomial R
generalizedEigenvector(alpha, m, k, g)
returns the generalized eigenvectors of the matrix relative to the eigenvaluealpha
. The integersk
andg
are respectively the algebraic and the geometric multiplicity of tye eigenvaluealpha
.
- generalizedEigenvectors: Matrix Fraction Polynomial R -> List Record(eigval: Union(Fraction Polynomial R, SuchThat(Symbol, Polynomial R)), geneigvec: List Matrix Fraction Polynomial R) if R has PolynomialFactorizationExplicit
generalizedEigenvectors(m)
returns the generalized returns the generalized eigenvectors of the matrixm
.