FractionalIdeal(R, F, UP, A)ΒΆ
divisor.spad line 1 [edit on github]
A: Join(FramedAlgebra(F, UP), RetractableTo F)
Fractional ideals in a framed algebra.
- 1: %
from MagmaWithUnit
- ^: (%, Integer) -> %
from Group
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- basis: % -> Vector A
basis((f1, ..., fn))
returns the vector[f1, ..., fn]
.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- commutator: (%, %) -> %
from Group
- denom: % -> R
denom(1/d * (f1, ..., fn))
returnsd
.
- ideal: Vector A -> %
ideal([f1, ..., fn])
returns the ideal(f1, ..., fn)
.
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- minimize: % -> %
minimize(I)
returns a reduced set of generators forI
.
- norm: % -> F
norm(I)
returns the norm of the idealI
.
- numer: % -> Vector A
numer(1/d * (f1, ..., fn))
= the vector[f1, ..., fn]
.
- one?: % -> Boolean
from MagmaWithUnit
- randomLC: (NonNegativeInteger, Vector A) -> A
randomLC(n, x)
should be local but conditional.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from MagmaWithUnit