FractionalIdeal(R, F, UP, A)ΒΆ
divisor.spad line 1 [edit on github]
A: Join(FramedAlgebra(F, UP), RetractableTo F)
Fractional ideals in a framed algebra.
- 1: %
 from MagmaWithUnit
- ^: (%, Integer) -> %
 from Group
- ^: (%, NonNegativeInteger) -> %
 from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
 from Magma
- basis: % -> Vector A
 basis((f1, ..., fn))returns the vector[f1, ..., fn].
- coerce: % -> OutputForm
 from CoercibleTo OutputForm
- commutator: (%, %) -> %
 from Group
- denom: % -> R
 denom(1/d * (f1, ..., fn))returnsd.
- ideal: Vector A -> %
 ideal([f1, ..., fn])returns the ideal(f1, ..., fn).
- latex: % -> String
 from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
 from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
 from Magma
- leftRecip: % -> Union(%, failed)
 from MagmaWithUnit
- minimize: % -> %
 minimize(I)returns a reduced set of generators forI.
- norm: % -> F
 norm(I)returns the norm of the idealI.
- numer: % -> Vector A
 numer(1/d * (f1, ..., fn))= the vector[f1, ..., fn].
- one?: % -> Boolean
 from MagmaWithUnit
- randomLC: (NonNegativeInteger, Vector A) -> A
 randomLC(n, x)should be local but conditional.
- recip: % -> Union(%, failed)
 from MagmaWithUnit
- rightPower: (%, NonNegativeInteger) -> %
 from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
 from Magma
- rightRecip: % -> Union(%, failed)
 from MagmaWithUnit
- sample: %
 from MagmaWithUnit