FramedModule R¶
algcat.spad line 1 [edit on github]
- R: Join(SemiRng, AbelianMonoid) 
A FramedModule is a finite rank free module with fixed R-module basis.
- 0: %
- from AbelianMonoid 
- *: (Integer, %) -> % if R has AbelianGroup
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- *: (R, %) -> %
- from LeftModule R 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> % if R has AbelianGroup
- from AbelianGroup 
- -: (%, %) -> % if R has AbelianGroup
- from AbelianGroup 
- basis: () -> Vector %
- basis()returns the fixed- R-module basis.
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- convert: % -> InputForm if R has Finite
- from ConvertibleTo InputForm 
- convert: % -> Vector R
- convert(a)returns the coordinates of- awith respect to the fixed- R-module basis.
- convert: Vector R -> %
- convert([a1, .., an])returns- a1*v1 + ... + an*vn, where- v1, …,- vnare the elements of the fixed basis.
- coordinates: % -> Vector R
- coordinates(a)returns the coordinates of- awith respect to the fixed- R-module basis.
- coordinates: Vector % -> Matrix R
- coordinates([v1, ..., vm])returns the coordinates of the- vi- 'swith to the fixed basis. The coordinates of- viare contained in the- ith row of the matrix returned by this function.
- hash: % -> SingleInteger if R has Hashable
- from Hashable 
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
- from Hashable 
- index: PositiveInteger -> % if R has Finite
- from Finite 
- latex: % -> String
- from SetCategory 
- lookup: % -> PositiveInteger if R has Finite
- from Finite 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- rank: () -> PositiveInteger
- rank()returns the rank of the module
- represents: Vector R -> %
- represents([a1, .., an])returns- a1*v1 + ... + an*vn, where- v1, …,- vnare the elements of the fixed basis.
- sample: %
- from AbelianMonoid 
- size: () -> NonNegativeInteger if R has Finite
- from Finite 
- smaller?: (%, %) -> Boolean if R has Finite
- from Comparable 
- subtractIfCan: (%, %) -> Union(%, failed) if R has AbelianGroup
- zero?: % -> Boolean
- from AbelianMonoid 
AbelianGroup if R has AbelianGroup
CancellationAbelianMonoid if R has AbelianGroup
Comparable if R has Finite
ConvertibleTo InputForm if R has Finite