FreeLieAlgebra(VarSet, R)ΒΆ
xlpoly.spad line 325 [edit on github]
VarSet: OrderedSet
The category of free Lie algebras. It is used by domains of non-commutative algebra: LiePolynomial and XPBWPolynomial. Author: Michel Petitot (petitot@lifl.fr
)
- 0: %
from AbelianMonoid
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from LieAlgebra R
- coef: (XRecursivePolynomial(VarSet, R), %) -> R
coef(x, y)
returns the scalar product ofx
byy
, the set of words being regarded as an orthogonal basis.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> XDistributedPolynomial(VarSet, R)
coerce(x)
returnsx
as distributed polynomial.
- coerce: % -> XRecursivePolynomial(VarSet, R)
coerce(x)
returnsx
as a recursive polynomial.
- coerce: VarSet -> %
coerce(x)
returnsx
as a Lie polynomial.
- construct: (%, %) -> %
from LieAlgebra R
- degree: % -> NonNegativeInteger
degree(x)
returns the greatest length of a word in the support ofx
.
- eval: (%, VarSet, %) -> %
eval(p, x, v)
replacesx
byv
inp
.
- latex: % -> String
from SetCategory
- LiePoly: LyndonWord VarSet -> %
LiePoly(l)
returns the bracketed form ofl
as a Lie polynomial.
- lquo: (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)
lquo(x, y)
returns the left simplification ofx
byy
.
- mirror: % -> %
mirror(x)
returnsSum(r_i mirror(w_i))
ifx
isSum(r_i w_i)
.
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- rquo: (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)
rquo(x, y)
returns the right simplification ofx
byy
.
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- trunc: (%, NonNegativeInteger) -> %
trunc(p, n)
returns the polynomialp
truncated at ordern
.
- varList: % -> List VarSet
varList(x)
returns the list of distinct entries ofx
.
- zero?: % -> Boolean
from AbelianMonoid
BiModule(R, R)
Module R