GenusZeroIntegration(R, F, L)¶
intaf.spad line 1 [edit on github]
- R: Join(GcdDomain, RetractableTo Integer, Comparable, CharacteristicZero, LinearlyExplicitOver Integer) 
- F: Join(FunctionSpace R, AlgebraicallyClosedField, TranscendentalFunctionCategory) 
- L: SetCategory 
This internal package rationalises integrands on curves of the form: y\^2 = a x\^2 + b x + c y\^2 = (a x + b) / (c x + d) f(x, y) = 0 where f has degree 1 in x The rationalization is done for integration, limited integration, extended integration and the risch differential equation.
- lift: (SparseUnivariatePolynomial F, Kernel F) -> SparseUnivariatePolynomial Fraction SparseUnivariatePolynomial F
- lift(u, k)undocumented
- multivariate: (SparseUnivariatePolynomial Fraction SparseUnivariatePolynomial F, Kernel F, F) -> F
- multivariate(u, k, f)undocumented
- palgint0: (F, Kernel F, Kernel F, F, SparseUnivariatePolynomial F) -> IntegrationResult F
- palgint0(f, x, y, d, p)returns the integral of- f(x, y)dxwhere- yis an algebraic function of- xsatisfying- d(x)\^2 y(x)\^2 = P(x).
- palgint0: (F, Kernel F, Kernel F, Kernel F, F, Fraction SparseUnivariatePolynomial F, F) -> IntegrationResult F
- palgint0(f, x, y, z, t, c)returns the integral of- f(x, y)dxwhere- yis an algebraic function of- xsatisfying- x = eval(t, z, ry)and- c = d/dz t;- ris rational function of- x,- cand- tare rational functions of- z. Argument- zis a dummy variable not appearing in- f(x, y).
- palgLODE0: (L, F, Kernel F, Kernel F, F, SparseUnivariatePolynomial F) -> Record(particular: Union(F, failed), basis: List F) if L has LinearOrdinaryDifferentialOperatorCategory F
- palgLODE0(op, g, x, y, d, p)returns the solution of- op f = g. Argument- yis an algebraic function of- xsatisfying- d(x)\^2y(x)\^2 = P(x).
- palgLODE0: (L, F, Kernel F, Kernel F, Kernel F, F, Fraction SparseUnivariatePolynomial F, F) -> Record(particular: Union(F, failed), basis: List F) if L has LinearOrdinaryDifferentialOperatorCategory F
- palgLODE0(op, g, x, y, z, t, c)returns the solution of- op f = g. Argument- yis an algebraic function of- xsatisfying- x = eval(t, z, ry)and- c = d/dz t;- ris rational function of- x,- cand- tare rational functions of- z.
- palgRDE0: (F, F, Kernel F, Kernel F, (F, F, Symbol) -> Union(F, failed), F, SparseUnivariatePolynomial F) -> Union(F, failed)
- palgRDE0(f, g, x, y, foo, d, p)returns a function- z(x, y)such that- dz/dx + n * df/dx z(x, y) = g(x, y)if such a- zexists, and “failed” otherwise. Argument- yis an algebraic function of- xsatisfying- d(x)\^2y(x)\^2 = P(x). Argument- foo, called by- foo(a, b, x), is a function that solves- du/dx + n * da/dx u(x) = u(x)for an unknown- u(x)not involving- y.
- palgRDE0: (F, F, Kernel F, Kernel F, (F, F, Symbol) -> Union(F, failed), Kernel F, F, Fraction SparseUnivariatePolynomial F, F) -> Union(F, failed)
- palgRDE0(f, g, x, y, foo, t, c)returns a function- z(x, y)such that- dz/dx + n * df/dx z(x, y) = g(x, y)if such a- zexists, and “failed” otherwise. Argument- yis an algebraic function of- xsatisfying- x = eval(t, z, ry)and- c = d/dz t;- ris rational function of- x,- cand- tare rational functions of- z. Argument- foo, called by- foo(a, b, x), is a function that solves- du/dx + n * da/dx u(x) = u(x)for an unknown- u(x)not involving- y.
- rationalize_ir: (IntegrationResult F, Kernel F) -> IntegrationResult F
- rationalize_ir(irf, k1)eliminates square root- k1from the integration result.
- univariate: (F, Kernel F, Kernel F, SparseUnivariatePolynomial F) -> SparseUnivariatePolynomial Fraction SparseUnivariatePolynomial F
- univariate(f, k, k, p)undocumented