IdealDecompositionPackage vlΒΆ
idecomp.spad line 1 [edit on github]
This package provides functions for the primary decomposition of polynomial ideals over the rational numbers. The ideals are members of the PolynomialIdeal domain, and the polynomial generators are required to be from the DistributedMultivariatePolynomial domain.
- contract: (PolynomialIdeal(Fraction Integer, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl, DistributedMultivariatePolynomial(vl, Fraction Integer)), List OrderedVariableList vl) -> PolynomialIdeal(Fraction Integer, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl, DistributedMultivariatePolynomial(vl, Fraction Integer))
contract(I, lvar)
contracts the idealI
to the polynomial ringF[lvar]
.
- primaryDecomp: PolynomialIdeal(Fraction Integer, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl, DistributedMultivariatePolynomial(vl, Fraction Integer)) -> List PolynomialIdeal(Fraction Integer, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl, DistributedMultivariatePolynomial(vl, Fraction Integer))
primaryDecomp(I)
returns a list of primary ideals such that their intersection is the idealI
.
- prime?: PolynomialIdeal(Fraction Integer, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl, DistributedMultivariatePolynomial(vl, Fraction Integer)) -> Boolean
prime?(I)
tests if the idealI
is prime.
- radical: PolynomialIdeal(Fraction Integer, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl, DistributedMultivariatePolynomial(vl, Fraction Integer)) -> PolynomialIdeal(Fraction Integer, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl, DistributedMultivariatePolynomial(vl, Fraction Integer))
radical(I)
returns the radical of the idealI
.
- zeroDimPrimary?: PolynomialIdeal(Fraction Integer, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl, DistributedMultivariatePolynomial(vl, Fraction Integer)) -> Boolean
zeroDimPrimary?(I)
tests if the idealI
is 0-dimensional primary.
- zeroDimPrime?: PolynomialIdeal(Fraction Integer, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl, DistributedMultivariatePolynomial(vl, Fraction Integer)) -> Boolean
zeroDimPrime?(I)
tests if the idealI
is a 0-dimensional prime.