IndexedExponents VarsetΒΆ
multpoly.spad line 859 [edit on github]
Varset: OrderedSet
IndexedExponents of an ordered set of variables gives a representation for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables
- 0: %
from AbelianMonoid
- *: (Integer, %) -> % if NonNegativeInteger has AbelianGroup
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> % if NonNegativeInteger has AbelianGroup
from AbelianGroup
- -: (%, %) -> % if NonNegativeInteger has AbelianGroup
from AbelianGroup
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- construct: List Record(k: Varset, c: NonNegativeInteger) -> %
from IndexedProductCategory(NonNegativeInteger, Varset)
- constructOrdered: List Record(k: Varset, c: NonNegativeInteger) -> %
from IndexedProductCategory(NonNegativeInteger, Varset)
- inf: (%, %) -> %
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> NonNegativeInteger
from IndexedProductCategory(NonNegativeInteger, Varset)
- leadingMonomial: % -> %
from IndexedProductCategory(NonNegativeInteger, Varset)
- leadingSupport: % -> Varset
from IndexedProductCategory(NonNegativeInteger, Varset)
- leadingTerm: % -> Record(k: Varset, c: NonNegativeInteger)
from IndexedProductCategory(NonNegativeInteger, Varset)
- listOfTerms: % -> List Record(k: Varset, c: NonNegativeInteger)
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
- map: (NonNegativeInteger -> NonNegativeInteger, %) -> %
from IndexedProductCategory(NonNegativeInteger, Varset)
- max: (%, %) -> %
from OrderedSet
- min: (%, %) -> %
from OrderedSet
- monomial?: % -> Boolean
from IndexedProductCategory(NonNegativeInteger, Varset)
- monomial: (NonNegativeInteger, Varset) -> %
from IndexedProductCategory(NonNegativeInteger, Varset)
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- reductum: % -> %
from IndexedProductCategory(NonNegativeInteger, Varset)
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean
from Comparable
- subtractIfCan: (%, %) -> Union(%, failed)
- sup: (%, %) -> %
- zero?: % -> Boolean
from AbelianMonoid
AbelianGroup if NonNegativeInteger has AbelianGroup
AbelianProductCategory NonNegativeInteger
IndexedDirectProductCategory(NonNegativeInteger, Varset)
IndexedProductCategory(NonNegativeInteger, Varset)