JetVectorField(JB, D)ΒΆ
jet.spad line 3319 [edit on github]
JetVectorField(JB, D)
implements vector fields over the jet bundle JB
with coefficients from D
. The fields operate on functions from D
.
- 0: %
from AbelianMonoid
- *: (%, D) -> %
from RightModule D
- *: (D, %) -> %
from LeftModule D
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- coefficient: (%, JB) -> D
coefficient(v, jb)
returns the coefficient ofv
in directionjb
.
- coefficients: % -> List D
coefficients(v)
yields the coefficients ofv
.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- commutator: (%, %) -> %
commutator(v, w)
calculates the commutator of two vector fields.
- copy: % -> %
copy(v)
returns a copy of the vector fieldv
.
- diff: JB -> %
diff(jb)
returns the base vector field in directionjb
.
- diffP: (PositiveInteger, List NonNegativeInteger) -> %
diffP(i, mu)
returns the base vector field in directionP(i, mu)
.
- diffU: PositiveInteger -> %
diffU(i)
returns the base vector field in directionU(i)
.
- diffX: PositiveInteger -> %
diffX(i)
returns the base vector field in directionX(i)
.
- directions: % -> List JB
directions(v)
yields the directions of the base vectors wherev
has non-vanishing coefficients.
- eval: (%, D) -> D
eval(v, f)
applies the vector fieldv
to the functionf
.
- latex: % -> String
from SetCategory
- lie: (%, %) -> %
lie(v, w)
calculates the Lie derivative ofw
with respect tov
. (This yields the commutator of the fields.)
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- prolong: (%, NonNegativeInteger) -> %
prolong(v, q)
prolongs a vector fieldv
defined on the base space into the jet bundle of orderq
.
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- table: List % -> TwoDimensionalArray %
table(lv)
computes the commutator table for a given list of vector fields.
- zero?: % -> Boolean
from AbelianMonoid
BiModule(D, D)
Module D