Localize(M, R)ΒΆ
fraction.spad line 1 [edit on github]
M: Module R
Localize(M
, R
) produces fractions with numerators from an R
module M
and denominators being the nonzero elements of R
.
- 0: %
from AbelianMonoid
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> %
x / d
divides the elementx
byd
.
- /: (M, R) -> %
m / d
divides the elementm
byd
.
- <=: (%, %) -> Boolean if M has OrderedAbelianGroup
from PartialOrder
- <: (%, %) -> Boolean if M has OrderedAbelianGroup
from PartialOrder
- >=: (%, %) -> Boolean if M has OrderedAbelianGroup
from PartialOrder
- >: (%, %) -> Boolean if M has OrderedAbelianGroup
from PartialOrder
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- denom: % -> R
denom x
returns the denominator ofx
.
- latex: % -> String
from SetCategory
- max: (%, %) -> % if M has OrderedAbelianGroup
from OrderedSet
- min: (%, %) -> % if M has OrderedAbelianGroup
from OrderedSet
- numer: % -> M
numer x
returns the numerator ofx
.
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if M has OrderedAbelianGroup
from Comparable
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
from AbelianMonoid
BiModule(R, R)
Comparable if M has OrderedAbelianGroup
Module R
OrderedAbelianGroup if M has OrderedAbelianGroup
OrderedAbelianMonoid if M has OrderedAbelianGroup
OrderedAbelianSemiGroup if M has OrderedAbelianGroup
OrderedCancellationAbelianMonoid if M has OrderedAbelianGroup
OrderedSet if M has OrderedAbelianGroup
PartialOrder if M has OrderedAbelianGroup