MomentPackage RΒΆ
distro.spad line 252 [edit on github]
An auxiliary package for various moment and cumulant transformations used in Distribution
.
- booleanCumulant2moment: Sequence R -> Sequence R
booleanCumulant2moment(cc)
computes the sequence of moments from the sequence of boolean cumulantscc
- cumulant2moment: Sequence R -> Sequence R
cumulant2moment(cc)
computes the sequence of moments from the sequence of classical cumulantscc
- freeCumulant2moment: Sequence R -> Sequence R
freeCumulant2moment(cc)
computes the sequence of moments from the sequence of free cumulantscc
- hankelDeterminant: (Sequence R, NonNegativeInteger) -> R
hankelDeterminant(x, n)
returns then
th Hankel determinant of the sequencex
.
- jacobi2poly: (Stream R, Stream R) -> Stream SparseUnivariatePolynomial R
jacobi2poly(aa, bb)
returns the stream of orthogonal polynomials corresponding to the Jacobi parametersa_n
andb_n
.
- moment2booleanCumulant: Sequence R -> Sequence R
moment2booleanCumulant(mm)
computes the sequence of boolean cumulants from the sequence of momentsmm
- moment2cumulant: Sequence R -> Sequence R
moment2cumulant(mm)
computes the sequence of classical cumulants from the sequence of momentsmm
- moment2freeCumulant: Sequence R -> Sequence R
moment2freeCumulant(mm)
computes the sequence of free cumulants from the sequence of momentsmm
- moment2jacobi2: Sequence R -> Stream Record(an: R, bn: R) if R has Field
moment2jacobi2(mm)
computes the Jacobi parameters as stream of pairs $(an,bn
)$.
- moment2jacobi: Sequence R -> Record(an: Stream R, bn: Stream R) if R has Field
moment2jacobi(mm)
computes the Jacobi parameters as pair of streams.
- moment2monotoneCumulant: Sequence R -> Sequence R
moment2monotoneCumulant(mm)
computes the sequence of monotone cumulants from the sequence of momentsmm
- moment2nthJacobi: List R -> Record(an: List R, bn: List R) if R has Field
moment2nthJacobi(mm)
computes the list of Jacobi parameters from the list of momentsmm
as far as possible.
- moment2Stransform: Sequence R -> Record(puiseux: Fraction Integer, laurent: Fraction Integer, coef: Sequence R) if R has Algebra Fraction Integer
moment2Stransform(x)
returns the Puiseux and Laurent order and coefficients of theS
transform ofx
- monotoneCumulant2moment: Sequence R -> Sequence R
monotoneCumulant2moment(hh)
computes the sequence of moments from the sequence of monotone cumulantshh
- monotoneCumulant2momentPoly: Sequence R -> Sequence SparseUnivariatePolynomial R
monotoneCumulant2momentPoly(hh)
computes the sequence of moment polynomials $m_n
(t
)$ from the sequence of monotone cumulantshh