NonAssociativeRngΒΆ
naalgc.spad line 142 [edit on github]
NonAssociativeRng is a basic ring-type structure, not necessarily commutative or associative, and not necessarily with unit. Axioms x*
(y+z
) = x*y + x*z
(x+y)*z
= x*z
+ y*z
Common Additional Axioms noZeroDivisors ab = 0 =>
a=0
or b=0
- 0: %
from AbelianMonoid
- *: (%, %) -> %
from Magma
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, PositiveInteger) -> %
from Magma
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
associator(a, b, c)
returns(a*b)*c-a*(b*c)
.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- commutator: (%, %) -> %
commutator(a, b)
returnsa*b-b*a
.
- latex: % -> String
from SetCategory
- leftPower: (%, PositiveInteger) -> %
from Magma
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- rightPower: (%, PositiveInteger) -> %
from Magma
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
from AbelianMonoid