NumberFieldIntegralBasis(UP, F)ΒΆ
intclos.spad line 512 [edit on github]
F: FramedAlgebra(Integer, UP)
In this package F is a framed algebra over the integers (typically F = Z[a] for some algebraic integer a). The package provides functions to compute the integral closure of Z in the quotient field of F.
- discriminant: () -> Integer
discriminant()returns the discriminant of the integral closure ofZin the quotient field of the framed algebraF.
- integralBasis: () -> Record(basis: Matrix Integer, basisDen: Integer, basisInv: Matrix Integer)
integralBasis()returns a record[basis, basisDen, basisInv]containing information regarding the integral closure ofZin the quotient field ofF, whereFis a framed algebra withZ-module basisw1, w2, ..., wn. Ifbasisis the matrix(aij, i = 1..n, j = 1..n), then theith element of the integral basis isvi = (1/basisDen) * sum(aij * wj, j = 1..n), i.e. theith row ofbasiscontains the coordinates of theith basis vector. Similarly, theith row of the matrixbasisInvcontains the coordinates ofwiwith respect to the basisv1, ..., vn: ifbasisInvis the matrix(bij, i = 1..n, j = 1..n), thenwi = sum(bij * vj, j = 1..n).
- localIntegralBasis: Integer -> Record(basis: Matrix Integer, basisDen: Integer, basisInv: Matrix Integer)
integralBasis(p)returns a record[basis, basisDen, basisInv]containing information regarding the local integral closure ofZat the primepin the quotient field ofF, whereFis a framed algebra withZ-module basisw1, w2, ..., wn. Ifbasisis the matrix(aij, i = 1..n, j = 1..n), then theith element of the integral basis isvi = (1/basisDen) * sum(aij * wj, j = 1..n), i.e. theith row ofbasiscontains the coordinates of theith basis vector. Similarly, theith row of the matrixbasisInvcontains the coordinates ofwiwith respect to the basisv1, ..., vn: ifbasisInvis the matrix(bij, i = 1..n, j = 1..n), thenwi = sum(bij * vj, j = 1..n).