OrthogonalPolynomialFunctions RΒΆ
special.spad line 131 [edit on github]
This package provides orthogonal polynomials as functions on a ring.
- chebyshevT: (NonNegativeInteger, R) -> R
chebyshevT(n, x)
is then
-th Chebyshev polynomial of the first kind,T[n](x)
. These are defined by(1-t*x)/(1-2*t*x+t^2) = sum(T[n](x) *t^n, n = 0..)
.
- chebyshevU: (NonNegativeInteger, R) -> R
chebyshevU(n, x)
is then
-th Chebyshev polynomial of the second kind,U[n](x)
. These are defined by1/(1-2*t*x+t^2) = sum(T[n](x) *t^n, n = 0..)
.
- hermiteH: (NonNegativeInteger, R) -> R
hermiteH(n, x)
is then
-th Hermite polynomial,H[n](x)
. These are defined byexp(2*t*x-t^2) = sum(H[n](x)*t^n/n!, n = 0..)
.
- laguerreL: (NonNegativeInteger, NonNegativeInteger, R) -> R
laguerreL(m, n, x)
is the associated Laguerre polynomial,L<m>[n](x)
. This is them
-th derivative ofL[n](x)
.
- laguerreL: (NonNegativeInteger, R) -> R
laguerreL(n, x)
is then
-th Laguerre polynomial,L[n](x)
. These are defined byexp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t^n/n!, n = 0..)
.
- legendreP: (NonNegativeInteger, R) -> R if R has Algebra Fraction Integer
legendreP(n, x)
is then
-th Legendre polynomial,P[n](x)
. These are defined by1/sqrt(1-2*x*t+t^2) = sum(P[n](x)*t^n, n = 0..)
.