ParametricIntegration(R, F)¶
intpar.spad line 1652 [edit on github]
R: Join(GcdDomain, Comparable, CharacteristicZero, RetractableTo Integer, LinearlyExplicitOver Integer)
F: Join(AlgebraicallyClosedField, TranscendentalFunctionCategory, FunctionSpace R)
This package implements general parametric integration. Most work is delegated to other packages.
- extendedint: (F, Symbol, List F) -> Record(particular: Union(Record(ratpart: F, coeffs: Vector F), failed), basis: List Record(ratpart: F, coeffs: Vector F))
extendedint(f, x, [g1, ..., gn])
returns solution of the systemf = dh/dx + c1*g1 + ... + cn*gn
and and a basis of the associated homogeneous systemdh/dx + c1*g1 + ... + cn*gn = 0
. Solutions are in the field generated by kernels off
andg1
, …,gn
.
- extendedint: (F, Symbol, List Kernel F, List F) -> Record(particular: Union(Record(ratpart: F, coeffs: Vector F), failed), basis: List Record(ratpart: F, coeffs: Vector F))
extendedint(f, x, [k1, ..., kn], [g1, ..., gn])
is like extendedint(f
, [k1
, …,kn
], [g1
, …,gn
]) but looks for solutions in the field generated byk1
, …,kn
.
- extendedint: (Symbol, List Kernel F, List F) -> List Record(ratpart: F, coeffs: Vector F)
extendedint(x, [k1, ..., kn], [g1, ..., gn])
returns a basis of the homogeneous systemdh/dx + c1*g1 + ... + cn*gn = 0
. Solutions are in the field generated byk1
, …,kn
.
- logextint: (Symbol, List Kernel F, List F) -> Record(logands: List F, basis: List Vector Fraction Integer)
logextint(x, lk, lg)
returns [[u1
, …, um], bas] giving basis of solution of the homogeneous systymc1*g1 + ... + cn*gn + c_{n+1}u1'/u1 + ... c_{n+m}um'/um = 0
- polylog_int: (F, Symbol, Kernel F, NonNegativeInteger, List Kernel F, F) -> Union(Record(ratpart: F, coeff: F, prim: F), failed)
polylog_int(f, x, k0, [k1, ..., kn], g)