PolynomialRoots(E, V, R, P, F)ΒΆ
manip.spad line 39 [edit on github]
V: OrderedSet
P: PolynomialCategory(R, E, V)
F: Field with
coerce: P -> %
denom: % -> P
numer: % -> P
computes n
-th roots of quotients of multivariate polynomials
- froot: (F, NonNegativeInteger) -> Record(exponent: NonNegativeInteger, coef: F, radicand: F) if R has GcdDomain
froot(f, n)
returns[m, c, r]
such thatf^(1/n) = c * r^(1/m)
.
- nthr: (P, NonNegativeInteger) -> Record(exponent: NonNegativeInteger, coef: P, radicand: List P)
nthr(p, n)
should be local but conditional
- qroot: (Fraction Integer, NonNegativeInteger) -> Record(exponent: NonNegativeInteger, coef: F, radicand: F)
qroot(f, n)
returns[m, c, r]
such thatf^(1/n) = c * r^(1/m)
.
- rroot: (R, NonNegativeInteger) -> Record(exponent: NonNegativeInteger, coef: F, radicand: F)
rroot(f, n)
returns[m, c, r]
such thatf^(1/n) = c * r^(1/m)
.