RectangularMatrix(m, n, R)ΒΆ
matrix.spad line 230 [edit on github]
R: Join(SemiRng, AbelianMonoid)
RectangularMatrix is a matrix domain where the number of rows and the number of columns are parameters of the domain.
- 0: %
from AbelianMonoid
- #: % -> NonNegativeInteger
from Aggregate
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> % if R has AbelianGroup
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> % if R has AbelianGroup
from AbelianGroup
- -: (%, %) -> % if R has AbelianGroup
from AbelianGroup
- /: (%, R) -> % if R has Field
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- antisymmetric?: % -> Boolean
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- any?: (R -> Boolean, %) -> Boolean
from HomogeneousAggregate R
- coerce: % -> Matrix R
coerce(m)
converts a matrix of type RectangularMatrix to a matrix of typeMatrix
.- coerce: % -> OutputForm
from CoercibleTo OutputForm
- column: (%, Integer) -> DirectProduct(m, R)
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- columnSpace: % -> List DirectProduct(m, R) if R has EuclideanDomain
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- convert: % -> InputForm if R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- count: (R -> Boolean, %) -> NonNegativeInteger
from HomogeneousAggregate R
- count: (R, %) -> NonNegativeInteger
from HomogeneousAggregate R
- diagonal?: % -> Boolean
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- elt: (%, Integer, Integer) -> R
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- elt: (%, Integer, Integer, R) -> R
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- eval: (%, Equation R) -> % if R has Evalable R
from Evalable R
- eval: (%, List Equation R) -> % if R has Evalable R
from Evalable R
- eval: (%, List R, List R) -> % if R has Evalable R
from InnerEvalable(R, R)
- eval: (%, R, R) -> % if R has Evalable R
from InnerEvalable(R, R)
- every?: (R -> Boolean, %) -> Boolean
from HomogeneousAggregate R
- exquo: (%, R) -> Union(%, failed) if R has IntegralDomain
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- hash: % -> SingleInteger if R has Finite
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Finite
from Hashable
- index: PositiveInteger -> % if R has Finite
from Finite
- latex: % -> String
from SetCategory
- less?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- listOfLists: % -> List List R
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- lookup: % -> PositiveInteger if R has Finite
from Finite
- map: ((R, R) -> R, %, %) -> %
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- map: (R -> R, %) -> %
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- matrix: List List R -> %
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- max: % -> R if R has OrderedSet
from HomogeneousAggregate R
- max: ((R, R) -> Boolean, %) -> R
from HomogeneousAggregate R
- maxColIndex: % -> Integer
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- maxRowIndex: % -> Integer
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- member?: (R, %) -> Boolean
from HomogeneousAggregate R
- members: % -> List R
from HomogeneousAggregate R
- min: % -> R if R has OrderedSet
from HomogeneousAggregate R
- minColIndex: % -> Integer
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- minRowIndex: % -> Integer
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- more?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- ncols: % -> NonNegativeInteger
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- nrows: % -> NonNegativeInteger
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- nullity: % -> NonNegativeInteger if R has IntegralDomain
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- nullSpace: % -> List DirectProduct(m, R) if R has IntegralDomain
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- parts: % -> List R
from HomogeneousAggregate R
- qelt: (%, Integer, Integer) -> R
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- rank: % -> NonNegativeInteger if R has IntegralDomain
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- rectangularMatrix: Matrix R -> %
rectangularMatrix(m)
converts a matrix of type Matrix to a matrix of typeRectangularMatrix
.
- row: (%, Integer) -> DirectProduct(n, R)
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- rowEchelon: % -> % if R has EuclideanDomain
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- size?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- size: () -> NonNegativeInteger if R has Finite
from Finite
- smaller?: (%, %) -> Boolean if R has Finite
from Comparable
- square?: % -> Boolean
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- subtractIfCan: (%, %) -> Union(%, failed) if R has AbelianGroup
- symmetric?: % -> Boolean
from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- zero?: % -> Boolean
from AbelianMonoid
AbelianGroup if R has AbelianGroup
BiModule(R, R)
CancellationAbelianMonoid if R has AbelianGroup
Comparable if R has Finite
ConvertibleTo InputForm if R has ConvertibleTo InputForm
Evalable R if R has Evalable R
InnerEvalable(R, R) if R has Evalable R
Module R if R has CommutativeRing
RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))