WuWenTsunTriangularSet(R, E, V, P)ΒΆ
triset.spad line 1391 [edit on github]
V: OrderedSet
P: RecursivePolynomialCategory(R, E, V)
A domain constructor of the category GeneralTriangularSet. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The construct operation does not check the previous requirement. Triangular sets are stored as sorted lists with respect to the main variables of their members. Furthermore, this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.
- #: % -> NonNegativeInteger
from Aggregate
- algebraic?: (V, %) -> Boolean
from TriangularSetCategory(R, E, V, P)
- algebraicVariables: % -> List V
from TriangularSetCategory(R, E, V, P)
- any?: (P -> Boolean, %) -> Boolean
from HomogeneousAggregate P
- autoReduced?: (%, (P, List P) -> Boolean) -> Boolean
from TriangularSetCategory(R, E, V, P)
- basicSet: (List P, (P, P) -> Boolean) -> Union(Record(bas: %, top: List P), failed)
from TriangularSetCategory(R, E, V, P)
- basicSet: (List P, P -> Boolean, (P, P) -> Boolean) -> Union(Record(bas: %, top: List P), failed)
from TriangularSetCategory(R, E, V, P)
- characteristicSerie: (List P, (P, P) -> Boolean, (P, P) -> P) -> List %
characteristicSerie(ps, redOp?, redOp)
returns a listlts
of triangular sets such that the zero set ofps
is the union of the regular zero sets of the members oflts
. This is made by the Ritt and Wu Wen Tsun process applying the operationcharacteristicSet(ps, redOp?, redOp)
to compute characteristic sets in Wu Wen Tsun sense.
- characteristicSerie: List P -> List %
characteristicSerie(ps)
returns the same ascharacteristicSerie(ps, initiallyReduced?, initiallyReduce)
.
- characteristicSet: (List P, (P, P) -> Boolean, (P, P) -> P) -> Union(%, failed)
characteristicSet(ps, redOp?, redOp)
returns a non-contradictory characteristic set ofps
in Wu Wen Tsun sense with respect to the reduction-testredOp?
(usingredOp
to reduce polynomials with respect to aredOp?
basic set), if no non-zero constant polynomial appear during those reductions, else"failed"
is returned. The operationsredOp
andredOp?
must satisfy the following conditions:redOp?(redOp(p, q), q)
holds for every polynomialsp, q
and there exists an integere
and a polynomialf
such that we haveinit(q)^e*p = f*q + redOp(p, q)
.
- characteristicSet: List P -> Union(%, failed)
characteristicSet(ps)
returns the same ascharacteristicSet(ps, initiallyReduced?, initiallyReduce)
.
- coerce: % -> List P
from CoercibleTo List P
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coHeight: % -> NonNegativeInteger if V has Finite
from TriangularSetCategory(R, E, V, P)
- collect: (%, V) -> %
from PolynomialSetCategory(R, E, V, P)
- collectQuasiMonic: % -> %
from TriangularSetCategory(R, E, V, P)
- collectUnder: (%, V) -> %
from PolynomialSetCategory(R, E, V, P)
- collectUpper: (%, V) -> %
from PolynomialSetCategory(R, E, V, P)
- construct: List P -> %
from Collection P
- convert: % -> InputForm
from ConvertibleTo InputForm
- count: (P -> Boolean, %) -> NonNegativeInteger
from HomogeneousAggregate P
- count: (P, %) -> NonNegativeInteger
from HomogeneousAggregate P
- degree: % -> NonNegativeInteger
from TriangularSetCategory(R, E, V, P)
- eval: (%, Equation P) -> % if P has Evalable P
from Evalable P
- eval: (%, List Equation P) -> % if P has Evalable P
from Evalable P
- eval: (%, List P, List P) -> % if P has Evalable P
from InnerEvalable(P, P)
- eval: (%, P, P) -> % if P has Evalable P
from InnerEvalable(P, P)
- every?: (P -> Boolean, %) -> Boolean
from HomogeneousAggregate P
- extend: (%, P) -> %
from TriangularSetCategory(R, E, V, P)
- extendIfCan: (%, P) -> Union(%, failed)
from TriangularSetCategory(R, E, V, P)
- find: (P -> Boolean, %) -> Union(P, failed)
from Collection P
- first: % -> Union(P, failed)
from TriangularSetCategory(R, E, V, P)
- headReduce: (P, %) -> P
from TriangularSetCategory(R, E, V, P)
- headReduced?: % -> Boolean
from TriangularSetCategory(R, E, V, P)
- headReduced?: (P, %) -> Boolean
from TriangularSetCategory(R, E, V, P)
- headRemainder: (P, %) -> Record(num: P, den: R)
from PolynomialSetCategory(R, E, V, P)
- iexactQuo: (R, R) -> R
from PolynomialSetCategory(R, E, V, P)
- infRittWu?: (%, %) -> Boolean
from TriangularSetCategory(R, E, V, P)
- initiallyReduce: (P, %) -> P
from TriangularSetCategory(R, E, V, P)
- initiallyReduced?: % -> Boolean
from TriangularSetCategory(R, E, V, P)
- initiallyReduced?: (P, %) -> Boolean
from TriangularSetCategory(R, E, V, P)
- initials: % -> List P
from TriangularSetCategory(R, E, V, P)
- last: % -> Union(P, failed)
from TriangularSetCategory(R, E, V, P)
- latex: % -> String
from SetCategory
- less?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- mainVariable?: (V, %) -> Boolean
from PolynomialSetCategory(R, E, V, P)
- mainVariables: % -> List V
from PolynomialSetCategory(R, E, V, P)
- map!: (P -> P, %) -> %
from HomogeneousAggregate P
- map: (P -> P, %) -> %
from HomogeneousAggregate P
- max: % -> P if P has OrderedSet
from HomogeneousAggregate P
- max: ((P, P) -> Boolean, %) -> P
from HomogeneousAggregate P
- medialSet: (List P, (P, P) -> Boolean, (P, P) -> P) -> Union(%, failed)
medialSet(ps, redOp?, redOp)
returnsbs
a basic set (in Wu Wen Tsun sense with respect to the reduction-testredOp?
) of some set generating the same ideal asps
(with rank not higher than any basic set ofps
), if no non-zero constant polynomials appear during the computations, else"failed"
is returned. In the former case,bs
has to be understood as a candidate for being a characteristic set ofps
. In the original algorithm,bs
is simply a basic set ofps
.
- medialSet: List P -> Union(%, failed)
medial(ps)
returns the same asmedialSet(ps, initiallyReduced?, initiallyReduce)
.
- member?: (P, %) -> Boolean
from HomogeneousAggregate P
- members: % -> List P
from HomogeneousAggregate P
- min: % -> P if P has OrderedSet
from HomogeneousAggregate P
- more?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- mvar: % -> V
from PolynomialSetCategory(R, E, V, P)
- normalized?: % -> Boolean
from TriangularSetCategory(R, E, V, P)
- normalized?: (P, %) -> Boolean
from TriangularSetCategory(R, E, V, P)
- parts: % -> List P
from HomogeneousAggregate P
- quasiComponent: % -> Record(close: List P, open: List P)
from TriangularSetCategory(R, E, V, P)
- reduce: ((P, P) -> P, %) -> P
from Collection P
- reduce: ((P, P) -> P, %, P) -> P
from Collection P
- reduce: ((P, P) -> P, %, P, P) -> P
from Collection P
- reduce: (P, %, (P, P) -> P, (P, P) -> Boolean) -> P
from TriangularSetCategory(R, E, V, P)
- reduceByQuasiMonic: (P, %) -> P
from TriangularSetCategory(R, E, V, P)
- reduced?: (P, %, (P, P) -> Boolean) -> Boolean
from TriangularSetCategory(R, E, V, P)
- remainder: (P, %) -> Record(rnum: R, polnum: P, den: R)
from PolynomialSetCategory(R, E, V, P)
- remove: (P -> Boolean, %) -> %
from Collection P
- remove: (P, %) -> %
from Collection P
- removeDuplicates: % -> %
from Collection P
- removeZero: (P, %) -> P
from TriangularSetCategory(R, E, V, P)
- rest: % -> Union(%, failed)
from TriangularSetCategory(R, E, V, P)
- retract: List P -> %
from RetractableFrom List P
- retractIfCan: List P -> Union(%, failed)
from RetractableFrom List P
- rewriteIdealWithHeadRemainder: (List P, %) -> List P
from PolynomialSetCategory(R, E, V, P)
- rewriteIdealWithRemainder: (List P, %) -> List P
from PolynomialSetCategory(R, E, V, P)
- rewriteSetWithReduction: (List P, %, (P, P) -> P, (P, P) -> Boolean) -> List P
from TriangularSetCategory(R, E, V, P)
- roughBase?: % -> Boolean
from PolynomialSetCategory(R, E, V, P)
- roughEqualIdeals?: (%, %) -> Boolean
from PolynomialSetCategory(R, E, V, P)
- roughSubIdeal?: (%, %) -> Boolean
from PolynomialSetCategory(R, E, V, P)
- roughUnitIdeal?: % -> Boolean
from PolynomialSetCategory(R, E, V, P)
- select: (%, V) -> Union(P, failed)
from TriangularSetCategory(R, E, V, P)
- select: (P -> Boolean, %) -> %
from Collection P
- size?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- sort: (%, V) -> Record(under: %, floor: %, upper: %)
from PolynomialSetCategory(R, E, V, P)
- stronglyReduce: (P, %) -> P
from TriangularSetCategory(R, E, V, P)
- stronglyReduced?: % -> Boolean
from TriangularSetCategory(R, E, V, P)
- stronglyReduced?: (P, %) -> Boolean
from TriangularSetCategory(R, E, V, P)
- triangular?: % -> Boolean
from PolynomialSetCategory(R, E, V, P)
- trivialIdeal?: % -> Boolean
from PolynomialSetCategory(R, E, V, P)
- variables: % -> List V
from PolynomialSetCategory(R, E, V, P)
- zeroSetSplit: List P -> List %
from TriangularSetCategory(R, E, V, P)
- zeroSetSplitIntoTriangularSystems: List P -> List Record(close: %, open: List P)
from TriangularSetCategory(R, E, V, P)
Evalable P if P has Evalable P
InnerEvalable(P, P) if P has Evalable P
PolynomialSetCategory(R, E, V, P)
TriangularSetCategory(R, E, V, P)