XPolynomialFactor(vl, F)¶
xpfact.spad line 1 [edit on github]
vl: OrderedSet
F: Field
undocumented
- factor: XDistributedPolynomial(vl, F) -> List XDistributedPolynomial(vl, F) if F has PolynomialFactorizationExplicit
factor(p)
returns a factorization ofp
into irreducible factors. Note: in general thare are finitely many nonequivalent factorizations into irreducible factors, this routine returns only one.
- homo_fact: XDistributedPolynomial(vl, F) -> List XDistributedPolynomial(vl, F)
homo_fact(p)
factors homogeneous polynomialp
into irreducible factors.
- ldivide: (XDistributedPolynomial(vl, F), XDistributedPolynomial(vl, F)) -> Record(quotient: XDistributedPolynomial(vl, F), remainder: XDistributedPolynomial(vl, F))
ldivide(a, b)
returns [c
,r
] such that a =b*c
+r
,r
is is of minimal possible degree and homogeneous part of ofr
of maximal degree contains no terms divisible from left by leading term ofb
.
- left_ext_GCD: (XDistributedPolynomial(vl, F), XDistributedPolynomial(vl, F)) -> Union(Record(g: XDistributedPolynomial(vl, F), c1: XDistributedPolynomial(vl, F), c2: XDistributedPolynomial(vl, F), cu: XDistributedPolynomial(vl, F), cv: XDistributedPolynomial(vl, F)), failed)
left_ext_GCD(a, b)
returns [g
,u0
,v0
,u
,v
] whereg
is leftGCD
of a andb
,g
=a*u0
+b*v0
and au = -bv
is least common right multiple of a andb
when a andb
have least common right multiple. Otherwise left_ext_GCD(a,b
) returns “failed”.
- top_split: XDistributedPolynomial(vl, F) -> List XDistributedPolynomial(vl, F)
top_split(p)
returns [p1
,p2
] wherep1
is homogeneous part ofp
of maximal degree andp2
is sum of lower order terms ofp
.