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Abstract

We compute the compactly supported cohomology of the standard
realization of any locally finite building.
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Introduction

A building consists of a set Φ (the elements of which are called “chambers”)
together with a family of equivalence relations (“adjacency relations”) on Φ
indexed by a set S and a “W -valued distance function,” Φ×Φ→W , where
W is a Coxeter group with fundamental set of generators S. So, associated
to any building there is a Coxeter system (W,S), its type.

There is a construction which associates a topological space to Φ. This
construction admits some freedom of choice. The idea is to choose a space
X as a “model chamber” and then glue together copies of it, one for each
element of Φ. To do this, it is first necessary to choose a family of closed
subspaces {Xs}s∈S so that copies of X corresponding to s-adjacent chambers
are glued together along Xs. (We call such a family, {Xs}s∈S , a “mirror
structure” on X.) Let U(Φ, X) denote the topological realization of Φ where
each chamber is realized by a copy of the model chamber X. (Details are
given in Section 2.)
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‡The third author also was partially supported by NSF grant DMS 0706259.
§The fourth author was partially supported by a Richard King Mellon research grant.
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Classically, interest has centered on buildings of spherical or affine type,
meaning that W is a spherical or Euclidean reflection group, respectively.
For example, each algebraic group over a local field has a corresponding
affine building. However, we are mainly interested in buildings which are
not classical in that their associated Coxeter systems are neither spherical
nor affine. This is a large class of spaces, many of which have a great deal
of symmetry. For example, such buildings arise in the theory of Kac-Moody
groups (e.g., see [6, 21, 22]). Also, nonclassical buildings associated to arbi-
trary right-angled Coxeter groups have been a subject of recent interest in
geometric group theory (e.g., see [8, 19, 26]).

Two choices for a model chamber X stand out. The first is X = ∆, a
simplex of dimension Card(S) − 1, with its codimension one faces indexed
by S. This was Tits’ original choice (cf. [1]). We call U(Φ,∆) the “classi-
cal realization” of Φ. The other choice for X is the “Davis chamber” K,
defined as the geometric realization of the poset S of spherical subsets of S
(see [9, Chapters 7, 18]). U(Φ,K) is the “standard realization” of Φ. Both
realizations are contractible. The standard realization is important in geo-
metric group theory, the reason being that in this field one is interested in
discrete group actions which are both proper and cocompact and these con-
ditions are more likely to hold for the action of a group of automorphisms
on the standard realization than on the classical realization. (If Φ has finite
thickness, U(Φ,K) is locally finite, while U(Φ,∆) need not be.)

If a discrete group Γ acts properly and cocompactly on a locally finite,
contractible CW complex Y , then the compactly supported cohomology of
Y is isomorphic to the cohomology of Γ with ZΓ coefficients. In particular, it
determines the virtual cohomological dimension of Γ, as well as, the number
of ends of Γ, and it determines if Γ is a duality group. (For more information,
see [17, Part IV].) However, as we will explain, even if one is only interested
in cohomological computations in the case of the standard realization of Φ, it
is necessary to carry out similar computations for various other realizations,
in particular, for the classical realization.

In the classical case of an (irreducible) affine building, the two notions
of model chamber agree: ∆ = K. So, in the affine case the study of the
cohomology of cocompact lattices in Aut(Φ) is closely tied to the study of
the cohomological properties of U(Φ,∆). For example, in [2] Borel and Serre
calculated the compactly supported cohomology, H∗

c (U(Φ,∆)), for any (irre-
ducible) affine building and then used this calculation to derive information
about the cohomology of “S-arithmetic” subgroups. The calculation of [2]
was that H∗

c (U(Φ,∆)) is concentrated in the top degree (= dim ∆) and is
free abelian in that degree.
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Our main result, Corollary 8.2, is a calculation of H∗
c (U(Φ,K)), general-

izing the theorem of Borel-Serre. In the case where Φ = W , this was done in
[7, 10, 12]. For a general (thick) building, in the case where (W,S) is right-
angled, it was done in [10, Theorem 6.6]. It was claimed in full generality
in [12]; however, there is a mistake in the proof (see [13]).

In order to write the formula, we need more notation. Let A be the
free abelian group of finitely supported, Z-valued functions on Φ. For each
subset T ⊆ S, let AT denote the subgroup of all functions f ∈ A which
are constant on each residue of type T . (A “residue” of type T is a certain
kind of subset of Φ; in the case of the building W , a residue of type T is
a left coset of WT , the subgroup of W generated by T .) N.B. The empty
set, ∅, is a spherical subset and a residue of type ∅ is just a single chamber;
hence, A∅ = A. If U ⊃ T , then AU ⊂ AT . Let A>T ⊂ AT denote the Z-
submodule,

∑
U⊃T AU . (Throughout this paper we will use the convention

that ⊆ denotes containment and ⊂ will be reserved for strict containment.
Also, we will use the symbol

∑
for an internal sum of modules and

⊕
to

mean either an external direct sum or an internal sum which we have proved
is direct.)

We shall show in Section 7 that A>T is a direct summand of AT . Let
ÂT be a complementary summand. As in [10] the main computation is a
consequence the following Decomposition Theorem (proved as Theorem 7.4
in Section 7).

The Decomposition Theorem.

A =
⊕
U∈S

ÂU and, in fact, for any T ∈ S, AT =
⊕
U⊇T

ÂU .

The point is that this theorem provides a decomposition of a coefficient
system which can be used to calculate the compactly supported cohomology
of any of the various realizations of Φ. The calculation in which we are most
interested is the following (proved as Corollary 8.2 in Section 8).

The Main Theorem. Suppose Φ is a building of finite thickness and type
(W,S). Let K be the geometric realization of the poset S of spherical subsets
of S. Then

H∗
c (U(Φ,K)) ∼=

⊕
T∈S

H∗(K, KS−T )⊗ ÂT .

(For any subset U of S, KU denotes the union of the Ks, with s ∈ U .)
The above theorem applies to all buildings. A general building Φ will

not be highly symmetric, in that its automorphism group, Aut(Φ), can have
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infinitely many orbits of chambers. However, if Φ/ Aut(Φ) is finite and if Γ is
a torsion-free cocompact lattice in Aut(Φ), then the Main Theorem implies
that the cohomological dimension of Γ is equal to the virtual cohomological
dimension of the corresponding Coxeter group. Moreover, this dimension is

cd(Γ) = vcd(W ) = max{k | Hk(K, KS−T ) 6= 0, for some T ∈ S}

(cf. Corollary 9.4). As another example, such a torsion-free cocompact
lattice is an n-dimensional duality group if and only if for each T ∈ S,
H∗(K, KS−T ) is free abelian and concentrated in degree n (cf. Corollary 9.5).

The central objective of [10] was to calculate H∗
c (U(W,K)) as a W -

module. In that paper we showed there is a filtration of H∗
c (U(W,K)) by

W -submodules so that the associated graded terms look like the terms on
the right hand side of the formula in the Main Theorem. Similarly, one
can ask about the G-module structure of H∗

c (U(Φ,K)) for any subgroup
G ⊆ Aut(Φ). The methods of [10] are well adapted to the present paper. In
particular, for each T ∈ S, the free abelian group AT is a G-module, as is its
quotient DT := AT /A>T . So, as in [10], there is a filtration of H∗

c (U(Φ,K))
by G-submodules and we get the following (proved as Theorem 9.1).

Theorem. Suppose G is a group of automorphisms of Φ. There is a filtra-
tion of H∗

c (U(Φ,K)) by right G-submodules with associated graded term in
filtration degree p: ⊕

T∈S
|T |=p

H∗(K, KS−T )⊗DT .

As we mentioned earlier, although the Main Theorem is the result of im-
portance in geometric group theory, it is no harder to do similar calculations
when the chambers are modeled on an arbitrary X (or at least on Xf , the
complement of the faces of X which have infinite stabilizers in W ). In fact,
as we explain below, the proof of the Decomposition Theorem depends on
first establishing a version of the Main Theorem for U(Φ,∆f ). So, the Main
Theorem ultimately depends on first proving a version of it in the case of the
classical realization. This version (proved as Theorem 4.3) is the following.

Theorem. When W infinite, H∗
c (U(Φ,∆f )) is free abelian and is concen-

trated in the top degree n (= dim ∆).

This result is obvious when Φ = W , for then U(W,∆f ) is homeomorphic
to Euclidean space Rn (see Section 2). We prove it for a general Φ by
showing the following (Theorem 3.1).

4



Theorem. U(Φ,∆f ) admits a CAT(0) metric (extending Moussong’s CAT(0)
metric on the standard realization).

The existence of this CAT(0) metric on U(Φ,∆f ) is of independent in-
terest. (See [20, 8] or [9] for a description of Moussong’s metric on U(Φ,K).)

To finish the calculation of H∗
c (U(Φ,∆f )) we invoke a result of [4] which

asserts that the compactly supported cohomology of such a CAT(0) space is
concentrated in the top degree provided the cohomology of each “punctured
link” vanishes except in the top degree. These links are spherical buildings
and the vanishing of the cohomology groups, in degrees below the top, of
their punctured versions is a result of [16] (and independently, [24]).

As we have said, special cases of the Decomposition Theorem were proved
in [10]. The method of [10] was simply to find a basis for A adapted to its
decomposition into the ÂT . In the general case, finding an explicit descrip-
tion of such a basis seems problematic. We use instead an idea coming from
an analogy with the argument of [11]. In that paper we proved L2 versions
of the Decomposition Theorem and of the Main Theorem. The proof of the
L2 version of the Decomposition Theorem was homological: the key step
was to show that certain “weighted L2-homology” groups of certain auxil-
iary spaces associated to W vanished except in the bottom degree. We then
applied a certain duality (not applicable here) to deduce the Decomposition
Theorem in the cases of actual interest. Analogously, in this paper we prove
the Decomposition Theorem by establishing the vanishing, except in the
top degree, of the cohomology of certain auxiliary spaces. The most impor-
tant of these auxiliary spaces is U(Φ,∆f ) and we indicated in the previous
paragraphs how we prove the result in that case.

1 Coxeter groups and buildings

A chamber system over a set S is a set Φ of chambers together with a family
of equivalence relations on Φ indexed by S. Two chambers are s-equivalent if
they are related via the equivalence relation with index s; they are s-adjacent
if they are s-equivalent and not equal. A gallery in Φ is a finite sequence of
chambers (ϕ0, . . . , ϕk) such that ϕj−1 is adjacent to ϕj , 1 ≤ j ≤ k. The type
of this gallery is the word s = (s1, . . . , sk) where ϕj−1 is sj-adjacent to ϕj .
If each sj belongs to a given subset T of S, then the gallery is a T -gallery. A
chamber system is connected (resp., T -connected) if any two chambers can
be joined by a gallery (resp., a T -gallery). The T -connected components of
a chamber system Φ are its residues of type T .
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A Coxeter matrix over a set S is an S×S symmetric matrix M = (mst)
with each diagonal entry = 1 and each off-diagonal entry an integer ≥ 2
or the symbol ∞. The matrix M defines a presentation of a group W as
follows: the set of generators is S and the relations have the form (st)mst

where (s, t) ranges over all pairs in S × S such that mst 6= ∞. The pair
(W,S) is a Coxeter system (cf. [3, 9]). Given T ⊆ S, WT denotes the
subgroup generated by T ; it is called a special subgroup. (WT , T ) is itself a
Coxeter system. The subset T is spherical if WT is finite.

Definition 1.1. The poset of spherical subsets of S (partially ordered by
inclusion) is denoted S.

Also, P (= P(S)) will denote the poset of all proper subsets of S. (In
Section 3 the poset P − S plays a role.)

Suppose (W,S) is a Coxeter system and M = (mst) is its Coxeter matrix.
Following [23] (or [10]), a building of type (W,S) (or of type M) is a chamber
system Φ over S such that

(i) for all s ∈ S, each s-equivalence class contains at least two chambers,
and

(ii) there exists a W -valued distance function δ : Φ×Φ→W . (This means
that given a reduced word s for an element w ∈ W , chambers ϕ and
ϕ′ can be joined by a gallery of type s from ϕ to ϕ′ if and only if
δ(ϕ, ϕ′) = w.)

Example 1.2. The group W itself has the structure of a building: the s-
equivalence classes are the left cosets of W{s} and the W -valued distance,
δ : W ×W →W , is defined by δ(v, w) = v−1w.

A residue of type T is a building; its type is (WT , T ). A building of
type (W,S) is spherical if W is finite. A building has finite thickness if
each s-equivalence class is finite, for each s ∈ S. (This implies all spherical
residues are finite.) Henceforth, all buildings will be assumed to have finite
thickness.

2 Geometric realizations of Coxeter groups and
buildings

A mirror structure over a set S on a space X is a family of subspaces (Xs)s∈S

indexed by S. Given a mirror structure on X, a subspace Y ⊆ X inherits a
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mirror structure by Ys := Y ∩Xs. If X is a CW complex and each Xs is a
subcomplex, then X is a mirrored CW complex. For each nonempty subset
T ⊆ S, define subspaces XT and XT by

XT :=
⋂
s∈T

Xs and XT :=
⋃
s∈T

Xs. (2.1)

Put X∅ := X and X∅ := ∅. Given a cell c of (a CW complex) X or a point
x ∈ X, put

S(c) := {s ∈ S | c ⊆ Xs},
S(x) := {s ∈ S | x ∈ Xs}.

Suppose now that S is the set of generators for a Coxeter system (W,S).
Let Υ(X) denote the union of the nonspherical faces of X and Xf its com-
plement in X, i.e.,

Υ(X) :=
⋃

T /∈S

XT and Xf := X −Υ(X). (2.2)

The mirror structure is W -finite if Υ(X) = ∅.
Given a building Φ of type (W,S) and a mirrored space X over S, define

an equivalence relation ∼ on Φ×X by (ϕ, x) ∼ (ϕ′, x′) if and only if x = x′

and δ(ϕ, ϕ′) ∈ WS(x) (i.e., ϕ and ϕ′ belong to the same S(x)-residue). The
X-realization of Φ, denoted U(Φ, X), is defined by

U(Φ, X) := (Φ×X)/ ∼ . (2.3)

(Φ has the discrete topology.) Suppose X is a mirrored CW complex and
that we are given a cell c of X and a chamber ϕ ∈ Φ. Then ϕ · c denotes the
corresponding cell in U(Φ, X). Let U (i) denote the set of i-cells in U(Φ, X).
Each such cell has the form ϕ · c for some ϕ ∈ Φ and i-cell c of X.

The classical realization. ∆ denotes the simplex of dimension |S| − 1,
with its codimension one faces indexed by S. In other words, the mirror ∆s

is a codimension one face and ∆T (the intersection of the ∆s over all s ∈ T )
is a face of codimension |T |.

The simplicial complex U(W,∆) is the Coxeter complex of (W,S) while
U(Φ,∆) is the classical realization of the building Φ.

Tits constructed a representation of W on RS called “the contragredient
of the canonical representation” in [3] and the “geometric representation”
in [9]. The elements of S are represented by reflections across the codi-
mension one faces of a simplicial cone C. The union of translates of C is
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denoted by WC. It is a convex cone and W acts properly on its interior
I. If W is infinite, WC is a proper cone. If Cf denotes the complement
of the nonspherical faces of C, then I is equivariantly homeomorphic to
U(W,Cf ). Assume W is infinite. Then the image of C − 0 in projective
space can be identified with the simplex ∆ obtained by intersecting C with
some affine hyperplane; moreover, ∆f is identified with the intersection of
Cf and this hyperplane. The image of I in projective space is then identi-
fied with U(W,∆f ). Since this image is the interior of a topological disk (of
dimension |S|−1), it follows that U(W,∆f ) is homeomorphic to a Euclidean
space of that dimension. In particular, it is contractible.

Geometric realizations of posets. Given a poset T , Flag(T ) denotes
the set of finite chains in T , partially ordered by inclusion, i.e., an el-
ement of Flag(T ) is a finite, nonempty, totally ordered subset of T . If
α = {t0, . . . , tk} ∈ Flag(T ) where t0 < · · · < tk, then we will write α :=
{t0 < · · · < tk} and min α := t0. Flag(T ) is an abstract simplicial complex
with vertex set T and with k-simplices the elements of Flag(T ) of cardinal-
ity k +1. The corresponding topological simplicial complex is the geometric
realization of the poset T and is denoted by |T |. For example, if P is the
poset of proper subsets of S, partially ordered by inclusion, then its opposite
poset, Pop, is the poset of nonempty faces of the simplex ∆. Flag(P) is the
poset of simplices in its barycentric subdivision, b∆, and |P| = b∆.

The standard realization, U(Φ, K). As before, S denotes the poset of
spherical subsets of S. Put K := |S|. It is a subcomplex of b∆ (provided W
is infinite). The mirror structure on ∆ induces one on K. More specifically,
for each s ∈ S, put Ks := |S≥{s}| and for each T ∈ S, KT = |S≥T |. (K is the
“compact core” of ∆f .) K is sometimes called the Davis chamber of (W,S)
and U(W,K), the Davis complex. Alternatively, U(Φ,K) is the geometric
realization of the poset of spherical residues of Φ (see [8]).

By construction U(Φ,K) is locally finite (since Φ is assumed to have
finite thickness). It is proved in [8] that U(Φ,K) is contractible.

The realization U(Φ, ∆f). ∆f and K have the same poset of faces (in-
dexed by S) and there is a face-preserving deformation retraction ∆f → K.
That is to say, ∆f is a “thickened version” of K. Similarly, U(Φ,∆f ) is
a thickened version of U(Φ,K). Like U(Φ,K), the space U(Φ,∆f ) has the
advantage of being locally finite; however, the chamber ∆f is not compact
whenever ∆f 6= ∆.
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3 A CAT(0) metric on U(Φ, ∆f)

Our goal in this section is to prove the following.

Theorem 3.1. Let Φ be a building of type (W,S) with W infinite. Then
there is a piecewise Euclidean, CAT(0) metric on U(Φ,∆f ).

Review of the Moussong metric. Suppose T is a spherical subset of S.
WT acts on RT via the canonical representation. The Coxeter cell of type
T , denoted PT , is defined to be the convex hull of the WT -orbit of a point
x0 in the interior of the fundamental simplicial cone. As examples, if WT is
a product of n copies of the cyclic group of order 2, then PT is an n-cube;
if WT is the symmetric group on n + 1 letters, then PT is an n-dimensional
permutohedron. Its boundary complex, ∂PT , is the dual of the Coxeter
complex of WT (the Coxeter complex is a triangulation of the unit sphere in
RT ). The fact that ∂PT is dual to a simplicial complex means that PT is a
“simple polytope”. The isometry type of PT is determined once we choose
the distance from x0 to each of the bounding hyperplanes of the simplicial
cone. (We assume, without further comment, that such a choice of distance
has been made for each s ∈ S.) The intersection of PT with the fundamental
simplicial cone is denoted BT and called the Coxeter block of type T . It is a
convex cell combinatorially isomorphic to a cube of dimension |T | (because
PT is simple). One can identify BT with the subcomplex |S≤T | of K in such
a way that x0 is identified with the vertex corresponding to ∅. To be more
precise, BT is the union of simplices of Flag(S) whose maximum vertex is
≤ T , i.e., |S≤T | is a subdivision of BT .

The convex polytope BT has two types of faces. First, there are the faces
which contain the vertex x0. Each such face is a Coxeter block of the form
BV for some V ⊆ T . The other type of face is the intersection of BT with
the face of the fundamental simplicial cone fixed by WV for some nonempty
V ⊆ T . We denote such a face by BT,V and call it a reflecting face of BT .
For the purpose of unifying different cases, we shall sometimes write BT,∅
instead of BT .

The Moussong metric on K is the piecewise Euclidean metric on K in
which each Coxeter block BT is given its Euclidean metric as a convex cell
in RT (cf. [20] or [9, Section 12.1]). This induces a piecewise Euclidean
metric on U(W,K) as well as one on U(Φ,K). The link of the central vertex
corresponding to ∅ can be identified with a certain simplicial complex L
(= L(W,S)) called the nerve of the Coxeter system. The vertex set of L
is S and a subset T ⊆ S spans a simplex if and only if it is spherical.
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Thus, the poset of simplices in L (including the empty simplex) is S. The
piecewise Euclidean metric on K induces a piecewise spherical metric on L
such that whenever mst <∞, the length of the edge corresponding to {s, t}
is π − π/mst. Moussong proved that this piecewise spherical metric on L is
CAT(1) and from this he deduced that the piecewise Euclidean metric on
U(W,K) is CAT(0) (cf. [20] and [9, Section 12.3]). Using this, it is proved in
[8] that for any building Φ, the Moussong metric on the standard realization,
U(Φ,K), is CAT(0).

A piecewise Euclidean metric on ∆f . We will define a cell structure on
∆f so that each cell will have the form BT,V ×[0,∞)m for some T ∈ S, V ⊆ T
and nonnegative integer m. When m > 0 such a cell will be noncompact.
There are two types of such cells. First there are the compact cells BT,V

where T ∈ S and V ⊆ T . The remaining cells are in bijective correspondence
with triples (T, V, α) where T ∈ S, V ⊆ T and α ∈ Flag(P −S) is such that
T < minα. Let F be the set consisting of pairs (T, V ) and triples (T, V, α),
where T ∈ S, V ⊆ T and α ∈ Flag(P − S) is such that T < minα. F is
partially ordered as follows:

• (T ′, V ′) ≤ (T, V ) if and only if T ′ ⊆ T and V ′ ⊆ V ,

• (T ′, V ′, α′) ≤ (T, V, α) if and only if (T ′, V ′) ≤ (T, V ) and α′ ⊆ α,

• (T ′, V ′) ≤ (T, V, α) if and only if (T ′, V ′) ≤ (T, V ).

The cell c(T, V, α) which corresponds to (T, V, α) is defined to be BT,V ×
[0,∞)α, where [0,∞)α means the set of all functions from the finite set α
to [0,∞). For the most part, it will suffice to deal with the case V = ∅
since the cells of the form BT × [0,∞)α cover ∆f . The piecewise Euclidean
structure on ∆f will be defined by declaring each BT × [0,∞)α to have the
product metric. Thus, the piecewise Euclidean metric on ∆f will extend the
one on K.

Lemma 3.2. ∆f has a decomposition into the cells, {BT,V } ∪ {c(T, V, α)},
defined above, where (T, V ) and (T, V, α) range over F .

To prove this, we need to set up a standard identification of the open cone
of radius 1 on a k-simplex σ with the standard simplicial cone [0,∞)k+1 ⊂
Rk+1. Let {vb}b∈B be the vertex set of σ for some finite index set B and let
(xb)b∈B be barycentric coordinates on σ. Let RB be the Euclidean space of
all functions B → R. Let S+(RB) denote the intersection of the standard
simplicial cone [0,∞)B with the unit sphere. Thus, S+(RB) is an “all right”
spherical simplex (i.e., all edge lengths and all dihedral angles are π/2). Let
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{eb}b∈B be the standard basis for RB. Define a homeomorphism θB : σ →
S+(RB), taking vb to eb, by∑

xbvb →
∑

xbeb

/
(
∑

x2
b)

1/2. (3.1)

Let r : [0, 1)→ [0,∞) be some fixed homeomorphism. The open cone on σ
can be regarded as the points [t, x] in the join, v ∗ σ, of σ with a point v
such that the join coordinate t is 6= 1. The homeomorphism from the open
cone to [0,∞)B is defined by [t, x]→ r(t)θB(x).

Proof of Lemma 3.2. Suppose α ∈ Flag(P). Then α = {T0 < · · · < Tk+l},
where Tk ∈ S and Tk+1 /∈ S. Put α′ := {T0 < · · · < Tk} and α′′ := {Tk+1 <
· · · < Tk+l}. The simplex σα′ lies in BTk

while the simplex σα′′ is in the
nonspherical face ∆Tk+1

. We have σα = σα′ ∗ σα′′ and a point in σα has
coordinates [t, x, y] where t ∈ [0, 1], x ∈ σα′ and y ∈ σα′′ . The points in
σα − σα′′ are those where the join coordinate t is 6= 1. The identification
σα − σα′′ → σα′ × [0,∞)α′′

is given by [t, x, y]→ (x, r(t)θα′′(y)).

Next we want to consider the link of the central vertex v∅ (corresponding
to ∅) in this cell structure. Let ∆op denote the simplex on S. The nerve
L is a subcomplex of ∆op. If W is spherical, then L = ∆op, while if W is
infinite, then L is a subcomplex of ∂∆op. Moreover, ∂∆op is a triangulation
of the (n − 1)-sphere, for n = |S|. Assume W is infinite. The link of v∅ in
∆f is a certain subdivision L′ of ∂∆op, which we shall now describe. The
vertex set of L′ is the disjoint union S ∪ (P − S). There are three types of
simplices in L′:

1) simplices σT in L corresponding to spherical subsets T ∈ S>∅,

2) simplices σα in b∂∆ (= b∂∆op) corresponding to flags α ∈ Flag(P − S),

3) joins σT ∗ σα, with T ∈ S>∅, α ∈ Flag(P − S) and T < minα.

Lemma 3.3. L′ is a subdivision of ∂∆op and L ⊆ L′ is a full subcomplex.

Proof. Suppose U is a minimal element of P − S. Let σU denote the corre-
sponding simplex in ∂∆op. Introduce a “barycenter” vU ∈ ∂∆op and then
subdivide σU to a new simplicial complex (σU )′ by coning off the simplices
in ∂σU . Each new simplex will have the form vU ∗ σT for some T ⊂ U .

Next, let U be an arbitrary element of P − S and suppose by induction
that we have defined the subdivision of (σU ′) for each U ′ ⊂ U and hence, a
subdivision (∂σU )′ of ∂σU . Introduce a barycenter vU of σU and subdivide
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by coning off (∂σU )′. Each new simplex will have the form vU ∗σU ′ for some
U ′ ⊂ U . In other words, each new simplex will be either of type 2 or type 3
above. It is clear that the subcomplex L is full.

The following lemma is also clear.

Lemma 3.4. L′ is the link of the central vertex in the piecewise Euclidean
cell structure on ∆f .

The piecewise Euclidean metric induces a piecewise spherical metric on
L′ extending the given metric on L. Since the link of the origin in [0,∞)k+1

is the all right spherical k-simplex we get the following description of the
metric on L′.

Lemma 3.5. The simplices in L′ have spherical metrics of the following
types.

1) For T ∈ S>∅, the simplex σT in L is the dual to the fundamental simplex
for WT on the unit sphere in RT . In other words, for distinct elements
s, t in T , the edge corresponding to {s, t} has length π − π/mst.

2) The simplex σα corresponding to α ∈ Flag(P −S) has its all right struc-
ture. In other words, each edge of σα has length π/2.

3) The simplex σT ∗σα has the structure of a spherical join. In other words,
the length of an edge connecting a vertex in σT to one in σα is π/2.

Remark 3.6. The simplicial complex L′ is the nerve of a Coxeter group
(W ′, S′) which contains W as a special subgroup. Namely, S′ is the disjoint
union, S∪(P−S). Two generators of S are related as before. If U , V ∈ P−S,
then put m(U, V ) := 2 whenever U ⊂ V or V ⊂ U and m(U, V ) := ∞,
otherwise. Similarly, if s ∈ S and U ∈ P − S, then m(s, U) = m(U, s) = 2
when s ∈ U and it is = ∞, otherwise. Since L′ is a triangulation of Sn−1,
with n = |S|, this shows that any n generator Coxeter group is a special
subgroup of a Coxeter group which acts cocompactly on a contractible n-
manifold (such a Coxeter group is said to be type HMn in [9]).

CAT(0) and CAT(1) metrics. Gromov [18] proved that a piecewise
Euclidean metric on a polyhedron Y is locally CAT(0) if and only if the
link in Y of each cell is CAT(1). In his proof that L(W,S) was CAT(1),
Moussong [20] gave a criteria for certain piecewise spherical structures on
simplicial complexes to be CAT(1). We recall his criteria below. A spherical
simplex has size ≥ π/2 if each of its edges has length ≥ π/2. A spherical
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simplex σ ⊂ Sk ⊂ Rk+1 with vertex set {v0, . . . , vk+1} and edge lengths
lij := cos−1(vi · vj) is determined up to isometry by the (lij). Conversely,
a symmetric (k + 1) × (k + 1) matrix (lij) of real numbers in [0, π) can be
realized as the set of edge lengths of a spherical simplex if and only if the
matrix (cos lij) is positive definite, cf. [9, Lemma I.5.1, p. 513]. Suppose
N is a simplicial complex with a piecewise spherical structure (i.e., each
simplex has the structure of a spherical simplex). N has size ≥ π/2 if each
of its simplices does. N is a metric flag complex if it satisfies the following
condition: given any collection of vertices {v0, . . . , vk} which are pairwise
connected by edges, then {v0, . . . , vk} is the vertex set of a simplex in N if
and only if the matrix of edge lengths (lij) can be realized as the matrix of
edge lengths of an actual spherical simplex. (In other words, if and only if
(cos lij) is positive definite.) Moussong’s Lemma is the following.

Lemma 3.7. (Moussong’s Lemma, [20] or [9, Appendix I.7]). Suppose a
piecewise spherical simplicial complex N has size ≥ π/2. Then N is CAT(1)
if and only if it is a metric flag complex.

The next result follows immediately from our previous description of the
piecewise spherical complex L′.

Lemma 3.8. L′ has size ≥ π/2 and is a metric flag complex.

Corollary 3.9. L′ is CAT(1). Moreover, L is a totally geodesic subcomplex.

Proof. The last sentence follows from the fact that L is a full subcomplex.

Since the link of any simplex in a metric flag complex of size ≥ π/2 has
the same properties (cf. [20, Lemma 8.3] or [9, Lemma I.5.11]), the link of
any simplex in L′ is also CAT(1). Since the link in ∆f ∩∆V of any cell of
the form BT,V × [0,∞)α can be identified with the link of the corresponding
simplex σT ∗ σα in L′, it follows that the link of each cell in ∆f is CAT(1).

Corollary 3.10. The piecewise Euclidean metric on U(W,∆f ) is CAT(0).

Proof. The union of WT -translates of a Coxeter block BT in U(W,∆f ) is
a Coxeter cell PT and the complete inverse image of BT in U(W,∆f ) is a
disjoint union of copies of PT . Hence, U(W,∆f ) has a cell structure in which
the cells are either translates of Coxeter cells of the form PT or translates
of cells of the form PT × [0,∞)α for some α ∈ Flag((P − S)>T ). In either
case the link of such a cell in U(W,∆f ) is identified with the link of the
corresponding cell in ∆f . By Corollary 3.9, U(W,∆f ) is locally CAT(0). A
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space is CAT(0) if and only if it is locally CAT(0) and simply connected
(cf. [18, p. 119] or [5, Ch. II.4]). U(W,∆f ) is contractible (hence, simply
connected), since it is homotopy equivalent to U(W,K). Therefore, it is
CAT(0).

We also want to consider links of cells of the form BT,V or BT,V × [0,∞)α

in various cell complexes. (Here BT,V is a reflecting face of BT .)

Lemma 3.11. Suppose c is a cell in ∆f of the form c = BT,V or c =
BT,V × [0,∞)α for some V ⊆ T ∈ S>∅ and α ∈ Flag((P − S)>T ). Let
d = BT or BT × [0,∞)α be the corresponding larger cell in ∆f and let σd be
the corresponding simplex in L′. Then

Lk(c,∆f ) = Lk(σd, L
′) ∗ τ(V ) (3.2)

Lk(c,U(W,∆f ) = Lk(σd, L
′) ∗ SV (3.3)

Here SV is the unit sphere in the canonical representation of WV on RV

and τ(V ) ⊂ SV is the fundamental simplex.
Moreover, suppose that Φ is a building of type (W,S), that R is the

spherical residue of type V containing the base chamber and that S(R) :=
U(R, τ(V )) is the spherical realization of R. Then

Lk(c,U(Φ,∆f ) = Lk(σd, L
′) ∗ S(R). (3.4)

Proof. Let ∆f
V denote the face of ∆f fixed by WV (cf. (2.1). Then

Lk(c,∆f ) = Lk(c,∆f
V ) ∗ Lk(∆f

V ,∆f )

= Lk(d, ∆f ) ∗ τ(V )
= Lk(σd, L

′) ∗ τ(V )

and similarly for formulas (3.3) and (3.4).

We can now prove the main result of this section.

Proof of Theorem 3.1. Any spherical building, such as S(R), is CAT(1) (e.g.,
see [8]) and the spherical join of two CAT(1)-spaces is CAT(1) (e.g., see [5]).
So, the theorem follows from (3.4). Alternatively, it can be proved from
Corollary 3.10 by using the argument in [8, §11].

A variation. In Section 4 we will need the following modification of the
previous construction. Given a subset U ⊆ S, we will define a new piecewise
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Euclidean metric on ∆f−∆U and then show that it induces CAT(0) metrics
on U(WS−U ,∆f −∆U ) and U(R,∆f −∆U ) for any (S −U)-residue R of Φ.

For each spherical subset T , let C∗
T ⊂ RT be the simplicial cone deter-

mined by the bounding hyperplanes of BT passing through the vertex x0.
(In other words, C∗

T is the dual cone to the fundamental simplicial cone.)
Let SS−U := S(WS−U , S−U) be the poset of spherical subsets of S−U and
let LS−U := L(WS−U , S − U) be the nerve of WS−U . ∆f − ∆U has a cell
structure with cells of the following two types:

(a) BT,V , where T ∈ SS−U and V ⊆ T ,

(b) BT × [0,∞)α, where α ∈ P − SS−U and T, V are as above.

As before, each such cell is given the natural product metric. In effect we
are putting Υ(∆) ∪∆U at infinity.

The piecewise Euclidean metric on ∆f−∆U induces one U(R,∆f−∆U ).
Let us describe the link, L′

S−U , of the central vertex in the new metric on
∆f −∆U . The vertex set of L′

S−U is (S−U)∪ (P −SS−U ). As before, there
are three types of simplices:

1) simplices σT in LS−U corresponding to spherical subsets T ∈ SS−U ,

2) simplices σα in b∂∆ (= b∂∆op) corresponding to flags α ∈ Flag(P −
SS−U ),

3) joins σT ∗ σα, with T ∈ SS−U , α ∈ Flag(P − SS−U ) and T < minα.

and L′
S−U can be identified with a subdivision of ∂∆op. Moreover, just

as before, L′
S−U has size ≥ π/2 and is a metric flag complex; hence, it is

CAT(1). This proves the following.

Theorem 3.12. Suppose U ⊆ S and R is any (S − U)-residue in Φ. Then
the piecewise Euclidean metric on U(R,∆f−∆U ), defined above, is CAT(0).

4 Metric spheres in U(Φ, ∆f)

An n-dimensional cell complex X is CM (for “Cohen-Macaulay”) if H̃∗(X)
is concentrated in degree n and is a free abelian group in that degree. Simi-
larly, an n-dimensional, noncompact, contractible space X is SI (for “spher-
ical at infinity”) if H∗

c (X) is concentrated in degree n and is a free abelian
group in that degree. We want to prove that U(Φ,∆f ) is SI. This is a
consequence of Theorems 4.1 and 4.2 below.
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Suppose N is a CAT(1), piecewise spherical polyhedron and that p ∈ N .
Let B(p, π/2) ⊆ N denote the open ball of radius π/2 centered at p. Define
a space PNp, called N punctured at p, by PNp := N − B(p, π/2). We are
interested in this concept when N = Lk(c), the link of a cell c in some
CAT(0) complex X. In this case we will write PLkp(c) for PNp and call it
the punctured link of c at p.

Theorem 4.1. (Brady, McCammond and Meier [4]). Let X be a CAT(0),
piecewise Euclidean cell complex (with finitely many shapes of cells). If for
each cell c in X and for each p ∈ Lk(c), the spaces Lk(c) and PLkp(c)
are (n − dim c)-acyclic, then X is n-acyclic at infinity. In particular, if X
satisfies this condition and is n-dimensional, then it is SI.

Remarks. In [4] the hypothesis of the above theorem is that X is the
universal cover of a finite, nonpositively curved complex; however, the proof
clearly works with a weaker hypothesis such as finitely many shapes of cells
(which holds in our case). The proof of the theorem uses Morse theory
for polyhedral complexes. Roughly, it goes as follows. Let ρ : X → R be
the distance from some base point x0, i.e., ρ(x) := d(x, x0). The spheres
S(r) of radius r centered at x0 ∈ X are the level sets of ρ. Call a point x
a critical point (of ρ) if it is the closest point to x0 in some closed cell c.
It follows from the CAT(0) hypothesis that the critical points are isolated.
If, for sufficiently small ε, there is no critical point in the annular region
between S(r + ε) and S(r), then S(r + ε) and S(r) are homeomorphic. On
the other hand, the effect of crossing a critical point x ∈ S(r) is to remove a
contractible neighborhood of x in S(r) and replace it by the punctured link
PLk(x)p where p is the direction at x of the geodesic from x to x0. (If x lies in
the relative interior of a k-dimensional cell c, then Lk(x) ∼= Sk−1∗Lk(c).) So,
the effect on the homotopy type of the level sets is to replace a contractible
neighborhood by a copy of a suspension of a punctured link. It follows that,
under the hypotheses of Theorem 4.1, each metric sphere is CM . Since X is
CAT(0), metric balls are contractible and since H∗

c (X) = lim−→H∗(B(r), S(r))
is concentrated in the top degree, X is SI.

Theorem 4.2. (Dymara–Osajda [16] and Schulz [24]). Suppose R is a
spherical building of type (WT , T ) and that S(R) (:= U(R, τ(T ))) is its spher-
ical realization. Then for any p ∈ S(R), the space PS(R)p is CM .

An immediate corollary to Theorems 4.1 and 4.2 is the following.

Theorem 4.3. (cf. [2]). With notation as in Section 3 and above, given any
building Φ, its realization U(Φ,∆f ) is SI.
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As a corollary to Theorem 3.12 we get the following relative version of
Theorem 4.1.

Theorem 4.4. Suppose U ⊆ S and R is any (S − U)-residue in Φ. Then
U(R,∆f −∆U ) is SI.

Corollary 4.5. Suppose U ⊆ S. Then U(Φ,∆f −∆U ) is SI.

Proof. U(Φ,∆f − ∆U ) is the disjoint union of the spaces U(R,∆f − ∆U )
where R ranges over the (S − U)-residues. By the previous theorem, the
compactly supported cohomology of each such component is free abelian
and concentrated in the top degree.

5 Cohomology with finite support and compact
support

Given a CW complex Y , C∗
fin(Y ) denotes the complex of finitely supported

cellular cochains on Y and H∗
fin(Y ) its cohomology. When Y is only required

to be a topological space, H∗
c (Y ) denotes its compactly supported singular

cohomology, i.e.,
H∗

c (Y ) := lim−→H∗(Y, Y − C),

where the direct limit is over all compact subsets C ⊆ Y . If Y is a locally
finite CW complex, H∗

fin(Y ) ∼= H∗
c (Y ).

Suppose Z, Z ′ are mirrored spaces over S. A map F : Z → Z ′ is
mirrored if F (ZT ) ⊆ Z ′

T for all T ⊆ S; it is a mirrored homotopy equivalence
if F |ZT

: ZT → Z ′
T is a homotopy equivalence for all T (including T = ∅).

Given a mirrored space X, let us say that Υ(X) is collared in X if there
is an increasing family N = {Nε}ε∈(0,a] of open neighborhoods of Υ(X)
(“increasing means that Nε ⊆ Nε′ whenever ε < ε′) such that the following
two properties hold:

(i)
⋂

ε∈(0,a] Nε = Υ(X) and

(ii) For each ε > 0, the inclusion Υ(X) ↪→ N ε is a mirrored homotopy
equivalence.

For example, if X is the simplex ∆, then Υ(∆) is collared in ∆. (Proof:
Υ(∆) is a union of closed faces and we can take Nε to be its ε-neighborhood
in ∆.) More generally, if X is any finite CW complex, then Υ(X) is collared
in X.
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Property (ii) implies that U(Φ,Υ(X)) ↪→ U(Φ, Nε) is a homotopy equiv-
alence. To simplify notation, in what follows we often write UX instead of
U(Φ, X).

Lemma 5.1. Suppose X is a finite, mirrored CW complex . Then

H∗
c (UXf ) = H∗

fin(UX ,UΥ(X)).

Proof. Since X is a finite complex, H∗
fin(UX ,UΥ(X)) = H∗

c (UX ,UΥ(X)). Since
Υ(X) is collared in X, we have a family N = {Nε} of open neighborhoods.
For a given N = Nε ∈ N , let ∂N denote the boundary of N . Since N is
mirrored homotopy equivalent to Υ(X),

H∗
fin(UX ,UΥ(X)) ∼= H∗

c (UX ,UN ) ∼= H∗
c (U(X−N),U∂N ),

where the second isomorphism is an excision. As ε→ 0, X −Nε → Xf , so
any compact subset C of UXf lies within some UX−Nε . Hence,

H∗
c (UXf ) = lim−→H∗(UXf ,UXf − C) = H∗

c (UX−N ,U∂N ).

Combining these equations, we get the result.

Example 5.2. ∆f is a thickened version of K and U(Φ,∆f ) is a thickened
version of U(Φ,K). Hence, U(Φ,∆f ) and U(Φ,K) are homotopy equivalent.
On the other hand, their compactly supported cohomology groups can be
completely different. For example, suppose W is the free product of three
copies of Z/2. Then ∆f is a triangle with its vertices deleted while K
is a tripod. U(W,∆f ) can be identified with the hyperbolic plane while
U(W,K) is the regular trivalent tree. (This is the familiar picture of the
congruence 2 subgroup of PSL(2,Z) acting on the hyperbolic plane.) The
compactly supported cohomology of U(W,∆f ) is that of the plane (i.e., it
is concentrated in degree 2 and is isomorphic to Z in that degree), while
the compactly supported cohomology of U(W,K) is that of a tree (i.e., it is
concentrated in degree 1 and is a countably generated, free abelian group in
that degree).

6 Cohomology with coefficients in I(A)

Let A (= A(Φ)) be the free abelian group of finitely supported, Z-valued
functions on Φ. For each subset T of S, define a Z-submodule of A:

AT := {f ∈ A | f is constant on each residue of type T}.
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Note that A∅ = A. Also note that AT = 0 whenever T is not spherical.
We have AU ⊂ AT when T ⊂ U . Let A>T be the Z-submodule of AT

spanned by the AU with T a proper subset of U . Put

DT := AT /A>T .

Remark 6.1. When Φ = W , A is the group ring ZW and AT consists of
elements in ZW which are constant on each left coset wWT . Let us assume
T is spherical (otherwise AT = 0). Let In(w) := {s ∈ S | l(ws) < l(w)}
be the set of letters with which a reduced expression for w can end. Since
T is spherical, each left coset of WT has a unique representative w which
has a reduced expression ending in the longest element of WT ; hence, this
representative has T ⊆ In(w). As a basis for DT , we can take images of the
elements in AT corresponding to cosets which have longest representatives
with T = In(w).

Definition 6.2. The abelian group A and the family of subgroups {AT }T⊆S

define a “coefficient system” I(A) on X so that the i-cochains with coeffi-
cients in I(A) are given by

Ci(X; I(A)) :=
∏

c∈X(i)

AS(c)

where X(i) denotes the set of i-cells in X.

We continue to write UX for U(Φ, X). Let U (i) denote the set of i-cells
in UX . Given a chamber ϕ ∈ Φ and an i-cell c in X, let ϕ · c denote the
corresponding i-cell in UX . Given a finitely supported function α : U (i) → Z,
and an i-cell c ∈ X(i) with S(c) spherical, we get an element f ∈ AS(c)

defined by f(ϕ) := α(ϕ · c). Of course, when S(c) is not spherical, AS(c) = 0.
So, for any finite, mirrored CW complex X, this establishes an isomorphism

Ci(X; I(A)) ∼= Ci
fin(UX ,UΥ(X)). (6.1)

In other words, the isomorphism (6.1) is given by identifying a finitely sup-
ported function on the inverse image in U (i) of a cell c ∈ X(i) with a function
on Φ (i.e., with an element of A) which is constant on S(c)-residues contain-
ing the cells ϕ · c.

The coboundary maps in C∗(X; I(A)) are defined by using these isomor-
phisms to transport the coboundary maps on finitely supported cochains to
C∗(X; I(A)). This means that the coboundary maps in C∗(X; I(A)) are de-
fined by combining the usual coboundary maps in C∗(X) with the inclusions
AU ↪→ AT for U ⊃ T . So, we have the following.
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Lemma 6.3. For X a finite, mirrored CW complex,

H∗(X; I(A)) = H∗
fin(UX ,UΥ(X)) = H∗

c (UXf ).

Proof. The second equation is from Lemma 5.1.

Remark 6.4. If Φ = W , then A = ZW . C∗(X; I(ZW )) can be interpreted
as the equivariant cochains on U(W,X) with coefficients in ZW . When X
is a finite complex, Lemma 6.3 asserts

C∗(X; I(ZW ) = C∗
fin(U(W,X),U(W,Υ(X))).

The corresponding cohomology groups were studied in [10, 7]. In particular,
when X = K, these cohomology groups are isomorphic to H∗(W ;ZW ).

In what follows the coefficient system is usually I(A) and we shall gen-
erally omit it from our notation, writing H( ) and C( ) instead of H( ; I(A))
and C( ; I(A)). (In other words, the coefficients I(A) are implicit when
we use the calligraphic C or H notation.) As usual, ∆ is the simplex of
dimension n = |S| − 1 with its codimension one faces indexed by S.

Theorem 6.5. (cf. [15, Theorem B] as well as [11, 14]). H∗(∆) is con-
centrated in degree n and is free abelian; moreover, Hn(∆) = D∅. More
generally, for any subset U of S, H∗(∆,∆U ) is concentrated in degree n and
is free abelian and

Hn(∆,∆U ) = A
/ ∑

s∈S−U

As

Proof. By Lemma 6.3, H∗(∆) = H∗
c (U∆f ) and by Theorem 4.3, the right

hand side is concentrated in degree n and is free abelian. The cochain
complex looks like

· · · → Cn−1(∆)→ Cn(∆)→ 0,

where Cn(∆) = A and Cn−1(∆) =
⊕

As. It follows that cohomology in
degree n is the quotient

A
/∑

s∈S

As = D∅.

Similarly, H∗(∆,∆U ) = H∗
c (U∆f−∆U ), and by Corollary 4.5 the right hand

side is concentrated in degree n and is free abelian. Since Cn(∆,∆U ) = A
and Cn−1(∆,∆U ) =

⊕
s/∈U As, we get the final formula in the theorem.

Corollary 6.6. D∅ is free abelian.
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Remark 6.7. We saw in Section 2 that whenever W is infinite, U(W,∆f )
is homeomorphic to Euclidean space Rn. Hence, the compactly supported
cohomology of U(W,∆f ) is that of H∗

c (Rn). Similarly, U(R,∆f − (∆f )U ) is
homeomorphic to Rn, for each (S − U)-residue R.

Remark 6.8. U(W,∆f ) is a thickened version of U(W,K). In the proof of
Corollary 3.10 we explained the cellulation of U(W,K) by “Coxeter cells.”
The corresponding cellular chain complex, C∗(U(W,K)), has the form

ZW ←−
⊕
s∈S

Hs ←−
⊕

T∈S(2)

HT ←− · · ·

where HT is the representation induced from the sign representation of WT

and where S(k) is the set of spherical subsets with k elements (cf. [11, §8]).
The cochain complex C∗(∆) for n− 2 ≤ ∗ ≤ n, looks like

· · · −→
⊕

T∈S(2)

AT−→
⊕
s∈S

As−→ ZW.

So, C∗(U(W,K)) and Cn−∗
c (U(W,∆f )) are Poincaré dual.

7 The Decomposition Theorem

We want to prove a version of Theorem 6.5 for lower dimensional spherical
faces of ∆. Suppose T is a spherical subset of S. Put σ = ∆T and m =
n − |T |. Let U be an arbitrary subset of S − T . We continue the policy of
omitting the coefficient system I(A) from our notation.

Proposition 7.1. Each of the following cohomology groups is concentrated
in the top degree and is a free abelian group in that degree:

H∗(σ, σU ), H∗(σU , ∂(σU )), and H∗(σU )

(The top degrees are m, m− 1, and m− 1, respectively.) Moreover,

Hm(σ, σU ) = AT
/ ∑

s∈(S−T )−U

AT∪{s}, (7.1)

Hm−1(σU , ∂(σU )) =
∑
s∈U

AT∪{s}, (7.2)

Hm−1(σU ) =
∑
s∈U

AT∪{s}/ ∑
s∈U

t∈(S−T )−U

AT∪{s,t}, (7.3)
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Proof. We first prove H∗(σ, σU ) is concentrated in degree m and is free
abelian. The proof is by induction on the number of elements in T . It holds
for |T | = 0 by Theorem 6.5. Suppose T = T ′ ∪ {s}, U ′ = U ∪ {s} and
τ = ∆T ′ . The exact sequence of the triple (τ, τU ′

, τU ) gives

· · · → H∗−1(σ, σU )→ H∗(τ, τU ′
)→ H∗(τ, τU )→ · · ·

(This uses the excision, H∗−1(τU ′
, τU ) ∼= H∗−1(σ, σU ).) By inductive hy-

pothesis, the last two terms are free abelian and concentrated in degree
m+1. Hence, H∗(σ, σU ) is concentrated in degree m. It is free abelian since
it injects into a free abelian group.

That the other cohomology groups are free abelian and are concentrated
in the top degree follows from various exact sequences. For example, for
H∗(σU , ∂(σU )), consider the sequence of the triple (σ, ∂σ, σS−U ):

→ H∗−1(σU , ∂(σU ))→ H∗(σ, ∂σ)→ H∗(σ, σS−U )→ (7.4)

where we have used the excision H∗−1(∂σ, σS−U ) ∼= H∗−1(σU , ∂(σU )) to
identify the first term. The second and third terms are free abelian and con-
centrated in degree m; hence, the first term is free abelian and concentrated
in degree m−1. For H∗(σU ), we have the exact sequence of the pair (σ, σU ):

→ H∗−1(σU )→ H∗(σ, σU )→ H∗(σ)→ (7.5)

where the second and third terms are free abelian and concentrated in degree
m. Hence, H∗(σU ) is free abelian and is concentrated in degree m− 1.

It remains to verify formulas (7.1), (7.2) and (7.3). We have Cm(σ, σU ) =
AT and Cm−1(σ, σU ) =

⊕
s/∈U AT∪{s}, so

Hm(σ, σU ) = AT
/ ∑

s/∈U

AT∪{s},

proving (7.1). (In particular, Hm(σ) = DT and Hn(∆) = D∅.) In the exact
sequence (7.4), we have Hm(σ, ∂σ) = AT and, by (7.1), Hm(σ, σS−U ) =
AT /

∑
s∈U AT∪{s}; hence, (7.2). Using (7.1) to calculate the second and

third terms of (7.5), we get

Hm−1(σU ) =
∑

s∈S−T

AT∪{s}/ ∑
s∈(S−T )−U

AT∪{s}

and this can be rewritten as (7.3).
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By Proposition 7.1, DT is the free abelian group Hm(∆T ). So, for each
T ∈ S, we can choose a splitting ιT : DT → AT of the projection map
AT → DT .

Definition 7.2. Let ÂT := ιT (DT ). (It is a direct summand of the free
abelian group AT .)

Proposition 7.3.

Hm(σ, σU ) =
⊕
V⊇T

V−T⊆U

ÂV (7.6)

Hm−1(σU , ∂(σU )) =
⊕
V⊃T

(V−T )∩U 6=∅

ÂV (7.7)

Hm−1(σU ) =
⊕
V⊃T

V−T⊆U

ÂV (7.8)

Proof. Assume by induction that (7.6) through (7.8) hold for dim σ = m−1
and assume as well that they hold when dim σ = m and U is replaced by U ′

with |U ′| < |U |. Write U = {s} ∪ U ′, for some s ∈ U . Consider the exact
sequence of the triple (σU , σs ∪ ∂(σU ), ∂(σU )):

0→ Hm−1(σU ′
, ∂(σU ′

))→ Hm−1(σU , ∂(σU ))→ Hm−1(σs, (σs)S−U ′
)→ 0,

(7.9)
where we have used the excisions H∗(σU , σs ∪ ∂(σU )) = H∗(σU ′

, ∂(σU ′
))

and H∗(σs ∪ ∂(σU ), ∂(σU )) = H∗(σs, (σs)S−U ′
) to rewrite the first and third

terms. By induction,

Hm−1(σU ′
, ∂(σU ′

)) =
⊕
V⊃T

V ∩U ′ 6=∅

ÂV ,

Hm−1(σs, (σs)S−U ′
) =

⊕
V⊇T∪{s}

V⊆T∪{s}∪U ′

ÂV

Substituting these into the last two terms of (7.9), we get

Hm−1(σU , ∂(σU )) =
⊕
V⊃T

V ∩U 6=∅

ÂV ,

which is (7.7). Next consider the Mayer-Vietoris sequence of σU = σU ′ ∪σs:

0→ Hm−2((σs)U ′
)→ Hm−1(σU )→ Hm−1(σU ′

)⊕Hm−1(σs)→ 0. (7.10)
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By induction,

Hm−2((σs)U ′
) =

⊕
V⊃T∪{s}

V−(T∪{s})⊆U ′

ÂV and Hm−1(σU ′
) =

⊕
V⊃T

V−T⊆U ′

ÂV

and Hm−1(σs)) = ÂT∪{s}. Substituting these into (7.10) we get

Hm−1(σU ) =
⊕
V⊃T

V−T⊆U

ÂV ,

which is (7.8). Sequence (7.5) is

0→ Hm−1(σU )→ Hm(σ, σU )→ Hm(σ)→ 0.

Substituting (7.8) for the first term and ÂT for the third, we get formula
(7.6) for the middle term.

We haveHm(σ, ∂σ) = AT . Hence, in the special case U = S−T formulas
(7.6) and (7.8) give the following theorem (cf. [25], [11, Thm. 9.11], [10,
Cor. 3.3]).

Theorem 7.4. (The Decomposition Theorem). For each subset T of S

AT =
⊕
V⊇T

ÂV .

For any Z-submodule B ⊂ A, put BT := AT ∩ B. Suppose we have a
direct sum decomposition of Z-modules, A = B⊕C, so that for each T ⊆ S,
AT = BT ⊕ CT . As explained in [10, §2] this leads to a decomposition
of coefficient systems I(A) = I(B) ⊕ I(C) so that for any mirrored CW
complex X we have a decomposition of cochain complexes C∗(X; I(A)) =
C∗(X; I(B))⊕ C∗(X; I(C)). Since

(ÂV )T =

{
ÂV if V ⊇ T ,
0 otherwise,

the formula in the Decomposition Theorem satisfies (A∅)T =
⊕

V⊇T (ÂV )T ,
for all T ⊆ S. So, we get a decomposition of coefficient systems I(A) =⊕

ÂV and a corresponding decomposition of cochain complexes:

C∗(X; I(A)) =
⊕
V

C∗(X; I(ÂV )) (7.11)
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8 Cohomology of buildings

Just as in [10, Thm. 3.5], the Decomposition Theorem (Theorem 7.4) implies
the following.

Theorem 8.1. (cf. [15, Cor. 8.2], [11, Thm. 10.3], [10, Thm. 3.5]). Suppose
X is a finite, mirrored CW complex. Then

H∗
c (U(Φ, Xf )) ∼=

⊕
T∈S

H∗(X, XS−T )⊗ ÂT .

Proof. By Lemma 6.3, H∗
c (U(Φ, Xf )) is the cohomology of C∗(X; I(A)).

Formula (7.11) gives a decomposition of cochain complexes:

C∗(X; I(A)) =
⊕
T∈S
C∗(X; I(ÂT ))

We have
Ck(X; I(ÂT )) =

∏
c∈X(k)

ÂT ∩AS(c) =
∏

c∈X(k)

c 6⊆XS−T

ÂT .

So, an element of Ck(X; I(ÂT )) is just an ordinary ÂT -valued cochain on X
which vanishes on XS−T , i.e.,

C∗(X; I(ÂT )) = C∗(X, XS−T )⊗ ÂT ; so,

C∗(X; I(A)) =
⊕
T∈S

C∗(X, XS−T )⊗ ÂT .

Taking cohomology, we get the result.

The most important special case of the previous theorem is the following.

Corollary 8.2.

H∗
c (U(Φ,K)) ∼=

⊕
T∈S

H∗(K, KS−T )⊗ ÂT .

9 The G-module structure on cohomology

We assume X has a W -finite mirror structure (i.e., X = Xf ). Suppose G
is a group of automorphisms of Φ. Then A, AT , A>T and DT are naturally
right G-modules and so are the cochain complex C∗

c (U(Φ, X)) and its co-
homology groups. The discussion in Section 8 is well adapted to studying
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the G-module structure of H∗
c (U(Φ, X)). As in [10], we should not expect a

direct sum splitting of G-modules analogous nonequivariant splitting of The-
orem 8.1; rather there should be a filtration of cohomology by G-modules
with associated graded terms similar to those in the direct sum. As we
indicate below, this is the case.

For each nonnegative integer p define a G-submodule Fp of A by

Fp :=
∑
|T |≤p

AT .

This gives a decreasing filtration:

A = F0 ⊃ · · · ⊃ Fp ⊃ Fp+1 · · · . (9.1)

As in [10], it follows from the Decomposition Theorem that the associated
graded terms are

Fp/Fp+1 =
⊕
|T |=p

DT .

As in Section 6, we get a coefficient system I(Fp), a cochain complex
C∗(X; I(Fp)) and corresponding cohomology groups H∗(X; I(Fp)). The fil-
tration (9.1) leads to a filtration of H∗(X; I(A)) (= H∗

c (U(Φ, X))) by right
G-modules,

H∗(X; I(A)) ⊃ · · ·H∗(X; I(Fp)) ⊃ H∗(X; I(Fp+1)) · · · . (9.2)

As in [10], the Decomposition Theorem implies that

0−→H∗(X; I(Fp+1))−→H∗(X; I(Fp))−→H∗
(
C∗(X; I(Fp))
C∗(X; I(Fp+1))

)
−→ 0

is short exact. From this we immediately deduce the following.

Theorem 9.1. Suppose G is a group of automorphisms of Φ. Then the
filtration (9.2) of H∗

c (U(Φ, X)) by right G-modules has associated graded
terms,

H∗(X;Fp)/H∗(X;Fp+1) ∼=
⊕

T∈S(p)

H∗(X, XS−T )⊗DT .

Cocompact G-action. In this final paragraph we assume that there are
only finitely many G-orbits on Φ and that X is a finite complex. These
hypotheses imply that the quotient space U(Φ, X)/G is compact and since
X is a finite complex, each of the cohomology groups H∗(X) is finitely
generated. As a corollary to Theorem 9.1, we have the following.
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Corollary 9.2. With the above hypotheses, H∗
c (U(Φ, X)) is a finitely gen-

erated G-module.

Proof. The assumption that G has only finitely many orbits of chambers
implies that each AT is finitely generated G-module; hence, so is each DT .

Example 9.3. Suppose G is chamber transitive, i.e., suppose Φ consists of
a single G-orbit. Choose a base chamber ϕ0, let B be its stabilizer and for
each T ∈ S, let GT be the stabilzer of the T -residue containing ϕ0. Then A
is the G-module Z(G/B) of finitely supported functions on G/B and AT can
be identified with Z(G/GT ). For each U ⊃ T , we have a natural inclusion
Z(G/GU ) → Z(G/GT ) induced by the projection G/GT → G/GU and DT

is the G-module formed by dividing out the sum of the images of Z(G/GU )
in Z(G/GT ) for all U ⊃ T .

Here are some further corollaries to Corollary 8.2 and Theorem 9.1.

Corollary 9.4. Suppose Γ ⊆ G is a cocompact lattice in G. Then H∗(Γ;ZΓ)
has, in filtration degree p, associated graded Γ-module⊕

T∈S(p)

H∗(K, KS−T )⊗DT .

In particular, when Γ is torsion-free, its cohomological dimension is given
by

cd(Γ) = max{k | Hk(K, KS−T ) 6= 0, for some T ∈ S}.

A torsion-free group Γ is an n-dimensional duality group if H∗(Γ;ZΓ)
is free abelian and concentrated in dimension n. Following [12, Definition
6.1], we say that the nerve of a Coxeter system has punctured homology
concentrated in dimension n if for all T ∈ S, H̃∗(KS−T ) is free abelian and
concentrated in dimension n. Corollary 8.2 gives us a (correct) proof of the
following result, stated in [12, Theorem 6.3].

Corollary 9.5. Suppose Γ ⊆ G is a torsion-free, cocompact lattice in G.
Then the following are equivalent.

1) Γ is an n-dimensional duality group.

2) W is an n-dimensional virtual duality group.

3) The nerve of (W,S) has punctured homology concentrated in dimension
n− 1.
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Moody non affines, C. R. Acad. Sc. Paris 342 (2006), 539-544.

[7] M.W. Davis, The cohomology of a Coxeter group with group ring coef-
ficents, Duke Math. J. 91 (1998), 297–314.

[8] , Buildings are CAT(0). In Geometry and Cohomology in Group
Theory (Durham, 1994), London Math. Soc. Lecture Note Ser. 252,
Cambridge Univ. Press, Cambridge, 1998, pp. 108–123.

[9] , The Geometry and Topology of Coxeter Groups, London Math.
Soc. Monograph Series, vol. 32, Princeton Univ. Press, 2007.

[10] M.W. Davis, J. Dymara, T. Januszkiewicz and B. Okun, Cohomology
of Coxeter groups with group ring coefficients: II, Algebr. Geom. Topol.
6 (2006), 1289–1318.

[11] , Weighted L2-cohomology of Coxeter groups, Geometry &
Topology 11 (2007), 47–138.

[12] M.W. Davis and J. Meier, The topology at infinity of Coxeter groups
and buildings, Comment. Math. Helv. 77 (2002), 746–766.

[13] , Erratum to “The topology at infinity of Coxeter groups and
buildings”, Comment. Math. Helv. 82 (2007), 235–236.

[14] J. Dymara Thin buildings, Geometry & Topology 10 (2006), 667–694.

28



[15] J. Dymara and T. Januszkiewicz, Cohomology of buildings and their
automorphism groups, Invent. Math. 150 (2002), 579–627.

[16] J. Dymara and D. Osajda, Boundaries of right-angled hyperbolic build-
ings, Fund. Math. 197 (2007), 123–165.

[17] R. Geoghegan, Topological Methods in Group Theory, Springer, New
York, 2008.

[18] M. Gromov, Hyperbolic groups in Essays in Group Theory, edited by
S. M. Gersten, M.S.R.I. Publ. 8, Springer, New York, 1987, pp. 75-264.

[19] T. Januszkiewicz and J. Świa̧tkowski, Commensurability of graph prod-
ucts, Algebr. Geom. Topol. 1 (2001), 587–603.

[20] G. Moussong, Hyperbolic Coxeter groups, Ph.D. thesis, Ohio State Uni-
versity, 1988.
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