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Abstract

Let L denote a right-invariant sub-Laplacian on an exponential, hence solvable Lie
group G, endowed with a left-invariant Haar measure. Depending on the structure of G,
and possibly also that of L, L may admit differentiable LP-functional calculi, or may be
of holomorphic LP-type for a given p # 2. By “holomorphic LP-type” we mean that every
LP-spectral multiplier for L is necessarily holomorphic in a complex neighborhood of some
non-isolated point of the L?-spectrum of L. This can in fact only arise if the group algebra
L'(G) is non-symmetric.

Assume that p # 2. For a point £ in the dual g* of the Lie algebra g of G, we denote by
Q(¢) = Ad*(G)¢ the corresponding coadjoint orbit. We prove that every sub-Laplacian on G
is of holomorphic LP-type, provided there exists a point ¢ € g* satisfying “Boidol’s condition”
(which, by [19] is equivalent to the non-symmetry of L!(G)), such that the restriction of Q(¢)
to the nilradical of g is closed. This work improves on the results in [15] in twofold ways:
On the one hand, we no longer impose any restriction on the structure of the exponential
group G, and on the other hand, for the case p > 1, our conditions need to hold for a single
coadjoint orbit only, and not for an open set of orbits, in contrast to [15].

It seems likely that the condition that the restriction of Q(¢) to the nilradical of g is
closed could be replaced by the weaker condition that the orbit Q(¢) itself is closed. This
would then prove one implication of a conjecture made in [15], according to which there
exists a sub-Laplacian of holomorphic L! (or, more generally, LP)-type on G if and only if
there exists a point £ € g* whose orbit is closed and which satisfies Boidol’s condition.!

Introduction

A comprehensive discussion of the problem studied in this article, background information and
references to further literature can be found in [15]. We shall therefore content ourselves in this
introduction by recalling some notation and results from [15].
If T is a self-adjoint linear operator on a Hilbertian L?-space L?(X,du), with spectral reso-
lution T' = [ AdE), and if m is a bounded Borel function on R, then we call m an LP-multiplier
R

for T (1 <p<o0),if m(T):= [ m(\)dE) extends from LP N L?*(X,du) to a bounded operator
on LP(X,dp). We shall denote by M,,(T') the space of all LP-multipliers for T', and by o,(T)
the LP- spectrum of T. We say that T is of holomorphic LP-type, if there exist some non-isolated
point \g in the L2-spectrum o2(7T") and an open complex neighborhood U of g in C, such that
every m € Mp(T) N Cu(R) extends holomorphically to U. Here, Coo (R) denotes the space of all
continuous functions on R vanishing at infinity.

Assume in addition that there exists a linear subspace D of L?(X) which is T-invariant and
dense in LP(X) for every p € [1,00][, and that T coincides with the closure of its restriction to
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D. Then, if T' is of holomorphic LP-type, the set U belongs to the LP-spectrum of T, i.e.
U C op(T). (0.1)

In particular,
02(T) C ay(T). (0.2)

Throughout this article, G will denote an exponential Lie group, i.e. the exponential mapping
exp : g — G is a diffeomorphism from the Lie algebra g of G onto GG. Such a group is solvable
[1]. The inverse mapping to exp will be denoted by log.

We fix a left-invariant Haar measure dg on G. If 7 : G — U(H) is a unitary representation
of G on the Hilbert space H = H,, then we denote the integrated representation of L!'(G) =
LY(G,dg) again by , i.e. 7(f)¢:= [5 f(9)m(9)¢dg for every f € LY(G), £ € H. For X € g, we
denote by dm(X) the infinitesimal generator of the one-parameter group of unitary operators
t— m(exptX). By X" we denote the right- invariant vector field on G, given by

o1
X'flg) = lim-[f((exptX)g) — f(g)]-
For a given function f on G, we write

Ao fl(x) = flg~'x), g,2€G,

for the left-regular action of G. Then ), acting on L?(G), is a unitary representation. In
particular, we have

X" = —dA(X) (0.3)

and

(X" p) = —dm(X)7 () (0-4)
for every X € g, ¢ € D(G) := C5°(G) and every unitary representation 7 of G.

In the sequel, we shall usually identify X € g with the right-invariant vector field —X" =
dA(X), since d\ (as dr for any unitary representation 7) is a morphism of Lie algebras. One
should notice that dA\(X) agrees with —X at the identity e of G, not with X. Then (0.4) reads
simply

m(Xp) = dr(X)m(p). (0.5)

dm extends from g to a representation 7, of the universal enveloping algebra u(g) of g on the
space C°(m) of all C*°-vectors for 7. Extending the convention above, we shall often identify
A € u(g) with the right-invariant differential operator Ao (A) on G. Notice that Ay (u(g)) consists
of all right-invariant complex coefficient differential operators on G.

Choose right invariant vector fields X, ..., Xi of g generating g as a Lie algebra, and form
the so-called sub-Laplacian

By [17], [10] L is hypoelliptic and essentially self-adjoint as an operator on L?(G, dg) with domain
D(G). We denote its closure again by L. Since G is amenable, one has

oa(L) = [0, 00]. (0.6)



In this article, we shall give sufficient conditions for such an operator to be of holomorphic
LP-type. As has been explained in [15], a necessary condition for this to happen is the non-
symmetry of the underlying group. Recall that the modular function Ag on G is defined by the
equation

/ f(zg)dz = AG(Q)A/ f(z)dzx, g€Q@G.
G G

We put

flo) = Fflgh),
9) = A9l

Then f + f* is an isometric involution on L!(G), and for any unitary representation 7 of G,
we have

m(f)" ==(f") .

The group G is said to be symmetric, if the associated group algebra L'(G) is symmetric,
i.e. if every element f € L(g) with f* = f has a real spectrum with respect to the involutive
Banach algebra L'(G).

The exponential solvable non-symmetric Lie groups have been completely classified by Pogun-
tke [19] (with previous contributions by Leptin, Ludwig and Boidol) in terms of a purely Lie-
algebraic condition (B). Let us describe this condition, which had been first introduced by Boidol
in a different context [2].

Recall that the unitary dual of G is in one to one correspondence with the space of coadjoint
orbits in g* via the Kirillov map, which associates with a given point ¢ € gx an irreducible
unitary representation 7, (see Section 1).

If £ is an element of the dual space g* of g, denote by

g(0) :=kerad*({) ={X € g: (([X,Y]) =0 VY € g}
the stabilizer of £ under the coadjoint action ad*. Moreover, if m is any Lie algebra, denote by
m=m'D>m?>...

2 = [m, m], and m**! = [m, m*]. Put

m>® = mmk.
k

the descending central series of m, i.e. m

m® is the smallest ideal £ in m such that m/¢ is nilpotent. Put

m(l) := g(f) + [g, g]-

Then we say that ¢ respectively the associated coadjoint orbit £2(¢) := Ad*(G)¢ satisfies Boidol’s
condition (B), if

(B) L |m(g)oo7'é 0.

According to [19], the group G is non-symmetric if and only if there exists a coadjoint orbit
satisfying Boidol’s condition.
If Q is a coadjoint orbit, and if n is the nilradical of g, then

Qly:={{n: L€ Q} Cn”



will denote the restriction of €2 to n.
In this article, we shall prove the following extension and improvement of the main theorems
in [15].

Theorem 1 Let G be an exponential solvable Lie group, and assume that there exists a coadjoint
orbit Q({) satisfying Boidol’s condition, whose restriction to the nilradical n is closed. Then every
sub-Laplacian on G is of holomorphic LP-type, for 1 < p < oo.

Remarks. (a) A sub-Laplacian L on G is of holomorphic LP-type if and only if every continuous
bounded multiplier F' € M,(L) extends holomorphically to an open neighborhood of a non-
isolated point in oa(L).

For, with F, also the function F()\) := e=*F()) lies in M, (L), since F(L) = e *F(L), where
the heat operator e~ is bounded on every LP(G). Furthermore, F lies in Cy(R).

(b) If the restriction of a coadjoint orbit to the nilradical is closed, then the orbit itself is
closed (see Thm. 2.2).

(c) Under the hypotheses of the theorem, we obtain in particular that the L?-spectrum
of L is strictly contained in the LP-spectrum of L (see (0.2)). This results has been proved
independently by D. Poguntke [20].

(d) What we really use in the proof is the following property of the orbit 2 :

Q is closed, and for every real character v of g which does not vanish on g({), there exists a
sequence {7, }n, of real numbers such that lim, o Q + 7, = 00 in the orbit space.

This property is a consequence of the closedness of €|,,. There are, however, many examples
where the condition above is satisfied, so that the conclusion of the theorem still holds, even
though the restriction of € to the nilradical is not closed (see e.g. Section 7). We do not know
whether the condition above automatically holds whenever the orbit €2 is closed.

The article is organized as follows: In Sections 1 and 2 we recall some basic facts from
the unitary representation theory of exponential Lie groups (compare [1], [14]). Moreover, we
prove a kind of Riemann-Lebesgue lemma for one parameter families of coadjoint orbits whose
restrictions to the nilradical are closed. In the third section, we show how the irreducible
unitary representations of such a group, which are in fact induced from characters of suitable
polarizing subgroups, can be realized on Euclidean L?-spaces. This will then allow for the
construction of analogous, isometric representations on certain mixed LP-spaces. Section 4
provides some auxiliary results. In Section 4.1, we prove some results on compact operators
acting on mixed LP-spaces and their spectral properties. In particular, we prove an extension
of a classical interpolation theorem by Krasnoselskii for compact operators acting on mixed
LP-spaces. Moreover, making use of well-known results on approximate units of Herz-Schur
multipliers for amenable groups, we prove a result on the approximation of certain convolution
operators by convolutions with continuous functions with compact support. This result will later
allow us to apply a transference result by Coifman and Weiss to spectral multiplier operators
F(L). In Section 5 we show how, in the presence of Boidol’s condition, one can construct
certain analytic families {77}, of bounded representations acting on mixed LP- spaces. Moreover,
putting T'(z) := 7w (h1), where h; denotes the heat kernel associated to L at time ¢ > 0, we show
that {T'(z)}. is an analytic family of compact operators on a wide range of mixed LP-spaces, so
that we can apply analytic perturbation theory. Putting together all results from the preceding
sections, we complete the proof of Theorem 1 in Section 6. Finally, in Section 7 we present the
example announced in Remark (d).



1 Irreducible unitary representations

Let again G = expg denote an exponential solvable Lie group and n a nilpotent ideal of g
containing [g, g]. Consider a composition sequence

g=g0201D ... D gm =1{0}

for the adjoint action of g, so that g;/gj;1 is an irreducible ad(g)-module. Since g is solvable,
by Lie’s theorem we have dimg;/gj+1 < 2. We may and shall assume that g, = n for some gq.
Choose a refinement

g=apDa D...Da ={0}

of the composition sequence, which means that dim(a;/a;41) = 1, and that either a; = g; for
some ¢, or, if a; is not an ideal of g, then a;_1 = g; and aj;1 = gi+1 for some 7. We call such a
sequence {a;}; a Jordan-Hélder sequence for g. Each a; is a subalgebra of g.

Let now £ be an element of g*. Denote by a;(¢) the subalgebra a;(¢) := {X € a; : {([X, q;]) =
{0}}, ie. a;j(¢) is the stabilizer of £|,; in a;.

Put

r—1
p(0) =D aj(0).
=0

Then p(¢) is a so-called Vergne-polarization for ¢. In particular, it is a polarization, i.e. a
subalgebra p of g of maximal possible dimension % (dim g + dim g(¢)) such that ¢([p,p]) = {0}.
Let P(¢) :=expp(¢) C G. We can define the unitary character

xe(p) = €*18P) - p e P(0),
of the closed subgroup P(¢), and denote by
— O dG
Te = T, p(e) -= MApp) Xe

the unitary representation of G' induced by the character x, of P({). Let us briefly recall the
notion of induced representation [1]:

If P is any closed subgroup of G, with left-invariant Haar measure dp and modular function
Ap, denote for F € Cy(G) by F the function on G given by

F@)i= [ Fan3Ew)dp, 2 eG

where Ag and Ap denote the modular functions of G and P, respectively. We shall also write
Ag p instead of Ag/Ap. Then F lies in the space

E(G,P):={f €C(G,C) : f has compact support modulo P,
and f(zp) = (Ag.p(p)) 'f(x) Vze€G,pec P}.

In fact, one can show that £(G, P) = {F : F € Cy(G)}. Moreover, one checks that F' = 0
implies [ F(x)dx = 0. From here it follows that there exists a unique positive linear functional,
denoted by ¢ /P di, on the space (G, P), which is left-invariant under G, such that

| F@)de = ) di = 2 y [ Hap) i) dpdi (1.1)

for every F' € Cy(G).



Now, given ¢ and the polarizing subgroup P = P(¢), put

E(G,P0):={f € C(G,C) : f has compact support moduloP,
and f(zp) = xe(p)(Ac.p(p))"*f(2) Vo € G, pe P},

1/2
[ fll2 == (}I{G/P\f(x)\Qdab> .

Observe that | f|> € £(G, P). Let H, = Hy,p(r) denote the completion of £(G, P, £) with respect to
this norm. Then Hy becomes a Hilbert space, on which G acts by left-translations isometrically,
and 7y is defined on Hy by

[me(9) () := flg™"2) = Mg)f)(x) forall f € Hy, g,2,€ G.

endowed with the norm

It has been shown by Bernat-Pukanszky and Vergne that the unitary representation 7, is irre-
ducible, and that 7, is equivalent to my, if and only if £ and ¢ lie on the same coadjoint orbit,
Le. if and only if Ad*(G)¢ = Ad*(G)¢' (see [1] or [14, Theorem 8]) . Moreover, every irreducible
unitary representation of G is equivalent to some 7. This shows that one has a bijection

K :g"/Ad*(G) — G, Ad*(G)l — [r],

called the Kirillov-map. Here, [m;] denotes the equivalence class of 7y, and G the (unitary) dual
of GG, i.e. the set of all equivalence classes of unitary irreducible representations of G.

2 The topology of G

Suppose again G to be exponential, and denote by C*(G) the C*-algebra of G, which is, by
definition, the completion of L!(G) with respect to the C*-norm

I flles = sup [|l=(f)ll, fe LY G).

TeG

Since G is amenable, ||f||c+ is in fact equal to ||[A(f)||, where A denotes the left-regular repre-
sentation (see ([18]).

If 7 € G, 7 extends uniquely to an irreducible unitary representation of C*(G), also denoted
by 7, and we let I; be the kernel of 7 in C*(G). This two-sided ideal is by definition a so-called
primitive ideal, and we denote by Prim(G) := {I, : m € G} the set of all primitive ideals of
C*(G). We endow Prim(G) with the Jacobson topology. Thus a subset C' of Prim(G) is closed
if and only if C is the hull h(I) of an ideal, i.e. C = h(I) := {J € Prim(G) : J D I}. For any
subset A of Prim(G), we denote by kerA := ;.4 J the kernel of A, which is an ideal in C*(G).

In any C*-algebra, a closed two-sided ideal I is always the kernel of its hull, i.e.

I= N J; (2.1)

JEePrimC*(G),J DI

see e.g. [4, 2.9.7].
Now, since exponential Lie groups are so-called type I groups, the mapping

t: G 3 [r] — I € Prim(G)

is a bijection (see [14, §6]). In particular, ¢ o K : g*/Ad*(G) — Prim(G) is bijective.



Even more is true: If we endow g*/Ad*(G) with the quotient topology induced by the
topology of g*, then
to K is a homeomorphism

(see [14, §3, Theorem 1]). We introduce on G a topology by pulling back the topology of Prim(G)
via .

Our proof of Theorem 1 will make use of the following results, the first of which is taken
from [15].

Theorem 2.1 Suppose G is an exponential solvable Lie group, and let £ € g*. If the orbit
Q) = Ad*(G)! is closed, then m(C*(G)) is the algebra of all compact operators on Hy. In
particular, 7y(f) is compact for every f € L*(G).

The second result is a kind of ”Riemann-Lebesgue Lemma”. Let us call an element v € g*
a character, if v([g, g]) = {0}.

Theorem 2.2 Suppose G is an exponential solvable Lie group, and let £ € g* with coadjoint
orbit = Q(f). Assume that the restriction of § to the nilradical n of the Lie algebra g is
closed. Then the orbit ) is itself closed, and for any real character v of g which does not vanish
on the stabilizer g(£) of £, we have that

lim Q+7v= lim QU+ 71v) =00 (2.2)

|| =00 |7|—o0

in the orbit space. In particular,

Um ||mpr ()] =0 (2.3)

|7|—o0

for every f € LY(Q).

Proof. Let p := /|, be the restriction of ¢ to n. The stabilizers G(¢) and G(p) of ¢ respectively
of pin G are closed connected subgroups, and we have G(¢) C G(p). There exists a closed subset
T of G such that G is the topological product of 7" and G(p), i.e. such that the mapping

TxG(p) — G, (t,u)—t-u,
is a homeomorphism. In the same way let S be a closed subset of G(p) such that the mapping
SxG) — G(p), (s,u)—s-u,
is a homeomorphism (see [14]). For g € G and m € g*, let us write the action of g on m as
Ad*(g)ym =g -m.
Put m(¢) := g(¢) + n. It is well-known that
G(p) - £ ={+m(0)*. (2.4)

In fact, if H = exph := G(p), then h = {X € g: {([X,Y]) =0 VY € n}. Therefore, if
Y e m({) and X € b, then

YY) —Y) = p([X, Y]) + %p([Xv (X, Y] +... =0,

since ad*(X)p = 0. This implies that H - £ C £ + m(£)*.



Moreover, since the bilinear form By(X,Y") := ¢([X,Y]) is non-degenerate on g modulo g(¢),
we have

a(p)/a(6) =~ (n+g(6)" =m()",

hence dim H - ¢ = dimm(¢). We thus obtain (2.4).
Assume now that lim,, . Q + 7, = Q(¢), for some ¢ € g*, which means that there exists
a sequence {my}, = {€, + T,v}, tending to ¢’ in g*, where ¢, € Q and 7, € R.
We can write £, = (t,5,)-¢, with t,, € T and s,, € S. Since s,,-£ = {+q, for some ¢, € m(£)*,
it follows that
by = (tnsn) A =tn L+ qn,

and thus
(En =+ Tny)|n =tpn- €|m

hence
0y = lim t, - £],.

n—oo
Since the restriction of € to n is closed, we have that ¢'|, = ¢’ - p for some ¢’ € T, and since Q|,
is homeomorphic to G/G(p) ~ T, it follows that

lim ¢, =t.
n—oo

Let us now take an element U € g(¢) such that v(U) # 0. Then

C(U) = lim t, - (U) + lim mv(U) =t (U) + lim m0(U).
Hence lim,,_,oo 7, = 7’ exists, and it follows that the sequence {g,}, convergences, hence also
lim,, o0 8, = &' exists. Finally

C=@{s) t+7veQ+v

This proves (2.2), and (2.3) is an immediate consequence of (2.2) (see [4]).
Q.ED.

3 Representations on mixed L’-spaces

We assume again that g =go D g1 D ... Dgg=nD ... D g = {0} is a composition sequence
passing through n. Let us assume that n is a nilpotent ideal containing [g, g].
Let ¢ € g*, and let p(¢) = p be the Vergne-polarization for ¢ associated to a fixed Jordan-
Holder sequence
g=apDa D...Da ={0}

refining this composition sequence. Then obviously pyp := p Nn is a Vergne-polarization for
by := l|,. As in the preceding proof, let g(fy) := {X € g: ly([X,Y]) =0 VY € n} be the
stabilizer of ¢y in g. Then

p C g(o) + po. (3.1)

In fact, choose k such that a; = n. Then, for j < k and X € a;(¢), we have {5([X,Y]) = 0 for
every Y € n, since n C a;j. This shows that p C g(fo) + 3> aj(¢0) = g(fo) + po.

Next, for every j > ¢, we choose a subspace v; in g; of dimension < 2, such that g; + pg =
v; ® (gj+1 + po), and define the index set J as follows:

J:={je{qg,...,m—1}:v; #{0}}.



Write J as an ordered d-tuple
J={n<...<Jja}s

where d := #J, and put w; :=v;, Cn, i =1,...,d, and w := w; & ... D wy. We shall often
identify o with the direct product to; X ... X tg.
The space o then forms a complementary subspace to the polarization pg in n, i.e.

n=r @ po. (3.2)
Let us choose a linear subspace b of p such that
p=bDpo. (3.3)
Then b Nn = {0}, so that we may choose a subspace h of g containing n such that
g:=b3h.
Then § is an ideal in g, and we may choose a subspace a of h such that
h=a®n.
Then we have p N h = pg, and, by (3.3), (3.2),
g=a®bPn=a®(p+n)=aPrdp. (3.4)
Let P :=expp, Py :=exppp and N := expn. Then the mapping
O=dgp:axwxP—G, (5 (w,...,wg),p)— exp(S)exp(wr)...exp(wq)p,
with w; € wj, is a diffeomorphism, and
E=FEgp:axw—G, (Sw)— oS w,e)

provides a section for G/P, i.e. aXxw > (S,w) — E(S,w)P is a diffeomorphism from a x o onto
G/P.

Similarly, v 3 w — E(0,w) Py is a diffeomorphisms from r onto N/P.

We shall later make use of the ”global chart” E for G/P in order to construct a more
concrete realization of the induced representation 7, on a Euclidean L?— space, which will then
also allow for the construction of more general representations on mixed L? spaces. Crucial for
this construction will be the subsequent analysis of "roots” on G.

To begin with, let is construct a decomposition of pg into subspaces s; subordinate to our
Jordan-Hoélder sequence. To this end, choose for every j > ¢ a subspace t; in g; of dimension
< 2, such that g; Npg = g1 N po D tj, and define another index set I as follows:

I={je{q,...,m—1}:v; #{0}}.
Write I again as an ordered e-tuple
I'={ji <...<je}
where e := #I, and put s; := v, i=1,--e. Then
po=561D... D5 =251 X ... X 5,

and the mapping

Op:bxpg— P, (T,Y1,---,Ye) — exp(T)exp(Yr)---exp(Ye) € P



is a diffeomorphism which identifies the Lebesgue measure on b x py with the Haar measure on
P.

Define also for every j = ¢,---,m — 1 the subspace u; of g; by u; := t; +v;. Then u; is the
direct sum

u; =15 Doy,

and
g =u®gj+1, Jj=¢...,m—1 (3.5)

In particular, we have
n=u; S DBiy_1.

According to (3.5), for j =¢,...,m—1, X € gand U € g;, we may write
ad(X)(U) = o;(X)U + Uj, (3.6)

where Uj is the component of ad(X)(U) in gj+1, and where a;(X) is an endomorphism of u;.
Then «; is an irreducible representation of g on u;, which we shall call a root of g. Since G is
exponential, the eigenvalues of a;(X), considered as an endomorphism of the complexification

of uj, are of the form a(1+1i03), where a and 3 are real numbers. For X e gand j =¢,...,m—1,
let

7i(X) == tr adgj/ng(X) = tr o (X),
where by ady /o, (X') we denote the factorized adjoint action of X on the quotient space g;/g;+1.

The functionals 7; are characters of g, since ady, ;. (X) = 0 for every X € n. Since ad(p)
acts on g/p, one finds that for X € p the corresponding ”trace of ad(X) modulo p” is given by

tr ad (X)=¢1(X), j=4q,...,m—1, (3.7)

gj+p/oj+1+p

where .
dimv;

€ i=q,...,m—1.

N dim uj’

Observe that ¢; # 0 if and only if g; + p/gj+1 +p ~ v; is non-trivial, i.e. if and only if
jedJ={j1<...<jq}. Fori=1,...,d and T € p we shall therefore put \;(T") := «a;,(T"), so
that for every w; € w;

ad(T)(w;) = Ni(T)w; modulo gj,41, i=1,...,d. (3.8)
Then, by (3.7) and (3.8), we have

d
tr ady/, (1) = Zajitr Xi(T), Tep. (3.9)
i=1

Observe now that also the mapping
UV:bxaxN—G, (T,5n)— exp(T)exp(S)n,

is a diffeomorphism. And, for every R € a, w = (w1,...,wg) Emwand S €a, T €bCp,neEn
we have

( exp(T)exp(S)n) LE(R,w)

d
= n texp(—5)exp(T) "t exp(R) exp(T) <H exp(e_ad(T)wi)) exp(—T). (3.10)
i=1

10



From (3.8) and (3.10), one can deduce that

(exp(T) exp(S)n) ' E(R,w) = E(R — S,w(R,w, T, S,n))p(R,w,T,S,n)"", (3.11)
where w:axXxtm xXbXxax N —w, p:axwmwxXxbxaxN — P are analytic mappings which
depend polynomially on w and n, and where w = (w1, ...,wq), with

wi(R,w,T,S,n) = e_)"'(T)(wi) + @i(R,we, ..., wi—1,T,S,n). (3.12)

Because of (3.3) and (3.10), we have p(R,w,T,S,n) = exp(T) mod Py, i.e.
p(R,w,T,S,n) =exp(T)v(R,w,T,S,n), (3.13)

with v(R,w,T,S,n) € Ph=PNN.
Putting p := exp(T') € P, we therefore obtain

et exda (7))~
Bar (PR, T.8.m) = Aa,p(p) = eesistirl=

T [det erdp (T)]—1

— e—tradg (T)+trad, (T) — eftradg/p(T)’

hence, by (3.9),

- Zd:éjitI‘)\i(T)
Agp(p(R,w,T,S,n)) =e = : (3.14)

In particular, if we define the real character A on G by

m—1 d
A(exp(X)) :=exp (— Z EjTj(X)) = exp <_Z€ji7_ji(X>> , X €g,
j=q =1

then
Ag p(p) = A(p) for every p e P. (3.15)

Now, in oder to realize the representation on a Euclidean L?-space, we first observe that the
left-invariant linear functional § sp A& in (1.1) is given by

(@) di:/ foE(R,w)dRdw Yf € &G, P) (3.16)
G/P axto

(see [14, Theorem 2]). For f € £(G, P), let us put

f(x) = Ax)f(x), =z=€QGq.

Since, by (3.15), A is a character of G’ which extends Ag p from P to G, we have for z € G and
peP 3 3

flap) = Alap) f(zp) = A@)A(p) Ac,p(p) " f(z) = f(2).
Thus the mapping A% : f — f is a linear isomorphism from (G, P) onto the space

E(G,P) :={f e€C(G,C): f has compact support modulo P,
and f(xp) = f(z) Vr e G,pe P}

Identifying functions on G/ P with P-right-invariant functions on G, we thus see that I3 (G,P) ~
Co(G/P). Moreover, if we define for any continuous function f with compact support on G/P
its integral by
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/ f(x)dé ::/ AYE(R, w)) f(E(R,w)) dR dw,
G/P axto
then clearly
(:L«)d:'c:/ fdi for every f € £(G, P). (3.17)
G/P G/P

Comparing with (1.1), we find in particular that

/ F(z)dx :/ / F(xp)A(zp)dpdx  for every f € Cp(G). (3.18)
G G/pJP

Let us define the space

E(G,P,t):={f € C(G,C): f has compact support modulo P,

and f(zp) = x¢(p)f(z) Vo € G, p€ P},

endowed with the norm || - ||2 given by
B [ 1f@Pdi= [ |ATAERw)ER )P R, (319
G/P axt

Observe that |f|2 € (G, P), if f € (G, P,{). Let H; denote the completion of £(G, P, /) with
respect to this norm. It is obvious that the mapping A : f — A/2f is a linear isomorphism
between £(G, P,¢) and £(G, P,{), which extends to an isometric isomorphism of the Hilbert

Y

space Hy onto the Hilbert space H,. Moreover, Hy is nothing but the space

L*(G/P,0) ;== {f : G — C: f is measurable, and f(zp) = x¢(p)f(z)
for a.e. x € G and every p € P, s.t. ||f||]2 < oo}.

We may therefore intertwine the representation m, with the operator A in order to obtain a
unitarily equivalent representation 7, on L?(G/P,{), given by

7e(g) = Am(9)A™, g eG.
A straight-forward computation shows that 7, is given explicitly by
[7e(9)f1(x) = Alg)"/*f(g~"a) for all f € L*(G/P,0), g,z €G,

ie.
7u(9) = Alg)'/*Mg), g€G. (3.20)
For a "multi-exponent” p = (p,p1,...,paq) € [1, oo['*4 let us now define the mized LP-space
LE(G/P,0) ~ LP(a, (LP* (11, LP2(0g,...))) by

L2(G/P,¢) :={f : G — C: f is measurable, and f(xp) = x¢(p)f(z)
for a.e. z € G and every p € P, s.t. ||f][, < oo},

where the mixed LZ-norm is given by

£l

Pd—2 1

= /a /m1 (/md_l </md (A_%f)(E(R,wl,...,wd)) . dwd>pi;1dwd_1) - dwy dR

12
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The space E(G, P,¢) is dense in L2(G/P,?), for any p.

Put 1
=, 1= 17 7d7
’Yz(ﬂ) i
and define the character 4, of g by
d
3p(X) =Y vlp)ejmi(X), if X ey,
i=1
1 m—1
p(X) :=— gim(X), ifX ca+n.
N P =

Observe that ¢, is well-defined, since (a4+n)Np C n, and since 7; vanishes on n. The corresponding
character of G is given by
Ap(exp(X)) = e X X eq

Notice that for 2 := (2,...,2) we have
Ay =AY and ||-|lz =12 (3.21)
Observe also that for R € a,w € mw, we have
A(E(R,w)) = A(exp(R)).

Let T € b and R € a,w € . Then, by (3.11), (3.12), we have

exp(T) 'E(R,w) = E(R, {e " Dw; + &i(R,wi,...,w;i—1,T,0,e)} ) p(R,w,T,0,e)"".
From the definition of the norm || - [|, we therefore obtain

M) fllp = Bp() M Ifllp for every f € LE(G/P,L), y € P.
Similarly, for S € a, we have that
exp STIE(R,w) = E(R — S, {w; + &i(R,wy,...,wi_1,0,e)})p(R,w,0,e)~",

hence
IM(exp ) fllp = Ap(exp(S) |||, for every f € L2(G/P,¢), S € a.

Finally, if we choose n € N, then of course
A fllp = 11 f]p-
It is now clear that we obtain an isometric representation Wg of G on LE(G/P, () by letting
[T (@) ]() = Do) f (g™ 0), g2 € G, f € LXG/P.0),
ie.
P
mi(9) = Bp(9)A(9), g€ G, (3.22)
Notice that by (3.20) and (3.21), the representation 77? is unitarily equivalent to 7y, i.e.
T~ . (3.23)

In the sequel, we shall work with Wg in place of my. With a slight abuse of notation, we shall
therefore denote 72 simply by m,. Observe that then for every function f € L'(G) such that
ApA_l/zf € L'(@), the operator ng(f) is given by the formula

17 (f) = (A, ATV2F), (3.24)

acting boundedly on the space LE(G/P,f). More generally, we have

13



Proposition 3.1 Let p,q € [1,00["*4, and let f € LY(G) such that AEAglf € LY(G). Then

the operator Feg(f) extends uniquely from LL(G/P,¢) N LE(G/P,{) to a bounded operator on
Li(G/P, L), given by the formula

7 (f) = THApA ). (3.25)

In particular, one has )
e (Dl aarpe—rac pe < HAQA;le- (3.26)

4 Auxiliary results

4.1 Compact operators acting on mixed [’-spaces

In this subsection, let M := X x Y be a product of two measure spaces (X, dx) and (Y, dy). For
1 < p < 0o, denote by L2 the mixed LP-space LP(X, L?*(Y)), endowed with the norm

151 = ([ i apprzan) ™

By 14 we denote the indicator function of a set A.

Lemma 4.1 (i) Let E = {E\,...,E,} be a family of disjoint measurable subsets of finite mea-
sure in X, and denote by S : L2 — LP the associated averaging operator

S(f)(x,y) = z_:llElgl ([E] f(u,y) du) Ig, (), f€LE (z,y)e XxY

with respect to the first variable. Then the operator norm of T is bounded by 1, for every p.
(i1) Similarly, let F = {Fi,...,Fy,} be a family of disjoint measurable subsets of finite
measure in Y, and denote by T : L2 — LP the associated averaging operator

m

)(z,y) :Z </fxv)dv>]IFj(y), felt (r,y) e X xY

with respect to the second variable. Then the operator norm of T is bounded by 1, for every p.

Proof. In order to prove (i), we write f,(y) := f(z,y). Then

where f; := ij fudu € L?(Y). Therefore
1
HS(f)xHQZZ - HfjHQ]IEj(x),
j | J‘
hence

1 _
/X 15(f)alls do = Z@Hfj\!’é’\ffj! =D _1E[TIE-
J

J

14



But, by Minkowski’s integral inequality and Holder’s inequality,

p
518 = 1 [, et < ( [ 1]

J

P [ Nl du =B [ 11 du.
E; E;

IN

Consequently,

HS(f)H£S%:/Ej\lfu\l’SdUZ/XHqué’dUZ 17115

The proof of (ii) is even simpler. Indeed, for f € L2 we have

fel

p/ )
) /X (Z ’;J’ /Fj frot 2) Qd:E = /X (Z /Fj ’f(x,v)de) dz
o (fsoeae)™ ae =i

2 p/2

dy dx

(I

S gl [ S

IN

Q.E.D.

We are now in a position to prove the following variant for mixed LP-spaces of an interpolation
theorem by Krasnoselskii [12].

Theorem 4.2 Let p,q € [1,00], p # q, and let K be a linear operator on LE + LL which maps
L2 compactly into L2 and L2 boundedly into LY. Then K is a compact operator from L- to L,
for every r lying strictly between p and q.

Proof. Observe that the space S of simple functions of the form }:; a;lp; @ I;, where the
E; and Fj form finite families of measurable subsets of finite measure in X, respectively Y, lies
dense in LY, for every 1 < r < oo.

Denote by Bj(0) the unit ball centered at the origin in L2. Since K := K (B;(0)) is a compact
subset of L2, for every k € N we may thus find simple functions ff, ..., ffk in § such that, for
any g € K, there exists a j such that ||g — f]’-“Hp < k%rl

Choose next finite families & = {E¥, ..., Eﬁk}, respectively Fr = {FF,..., F,knk} of disjoint
measurable subsets of X, respectively of Y, such that every f = fjk can be written as a linear
combination of functions of the form Ipr ® Ipx.

Denote by Sy and T}, the averaging operator associated to &, respectively Fj in Lemma 4.1,
and let Ry be the operator of finite rank given by

Ry :=Sp0T, kéeN.

Then kaf = f]k for any j, and so, if g € K, and if we choose j such that ||g — fpr < ﬁ, then
we obtain from Lemma 4.1 that N

k k
lg = Regllp < Ilg — f{llp + |1 Rk (f} — 9)llp < TR

This shows that limy_., Ri(g) = g in L2 for every g € K. As a consequence, we obtain
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khm |’RkOK—KHLg_,Lg:0. (4.1)
For, otherwise we could find a sequence of functions f; in B;(0) and £ > 0, such that
I fillp =1 and [[(Ry —T) o Kfillp > ¢ Vk. (4.2)

Passing to a subsequence, if necessary, we could then assume that the sequence of functions
gk := K fi, had a limit g in K, since K is compact. This would imply limg_,o (Rx —1)(gx —g) = 0,
hence limy_,o (R — I) o K(fx) = 0, contradicting (4.2).

On the other hand

|Reo K — K|[pa_ps <2|[K||pa e, VEEN, (4.3)

because ||Rk||ps—ra is bounded by 1 for every k. Applying the Riesz-Thorin interpolation
theorem, it follows from (4.1) and (4.2) that

lim ||Rio K — K||pr —zr =0,
k—o0
for every r lying strictly between p and ¢. Our assertion follows.

Q.ED.

In the sequel, we shall denote the space of compact operators on a Banach space E by K(E).
Moreover, if K is an operator as in Thm. 4.2, and if we consider K as a compact operator
from LT to LX, for r lying strictly between p and ¢, then we shall also write K, in place of K.
The spectrum of K, € K(L") will be denoted by o, (K). Given p € [1,00], we shall denote the

conjugate exponent by p’, i.e. % + I% =1.

As for the spectra of K on different L™spaces, we have

Proposition 4.3 Let 1 < py < 2, and let K be a linear operator on LPo + L£37 mapping the
space LPo, as well as the dual space LBE, compactly into itself, so that, by the preceding theorem,
K is a compact operator on LE for every p € [po, pl]. Assume further that K is self-adjoint on
L% Let A € 0p,(K) \ {0}. Then X is real, and every generalized eigenvector of K, associated
to A is in fact an eigenvector, lying in ﬂpe[pm%] L2, In particular, all LE- spectra coincide, i.e.
op(K) = 02(K), and so do the eigenspaces corresponding to non-zero eigenvalues, for every
p € [po, po)-

Proof. Let A € 0, (K)\{0}, and let E C D be two compact neighbourhoods of the line segment

[A, \], which are invariant under complex conjugation, such that D is also a neighbourhood of E.
Since the non-zero eigenvalues are isolated, by shrinking F and D, if necessary, we may assume
that o,(K) N D C [\ ], for ¢ = po,2,p). Then for any u € D\ E°, we have that (K — u)~*
exists on L2 for ¢ = po, 2, p, and there exists a constant C' > 0, such that

I = 1M zogzo + 1K =)yl SC. Ve D\ B,
Thus, by interpolation, we obtain
(K — 1) 2z < C, for every € D\ E°, p € [po, ). (4.4)

In particular (K, — p)~! exists on L2 This implies that no point u € D\ [\, A] lies in any of
the sets 0,(K), p € [po, pp), i-e. op(K)N D C [\ A]. Let

D:= (] Lk
PE[Po,pp)
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Then D is dense in L2 and invariant under K, for every p € [po, pj)-
We show that, for € D\ [A, A], the restriction

(Kp — N)71|D

of (K, — p1)~! to the joint core D does not depend on p € [po, pp)-
Indeed, let £ € L2N LY, and let

Mp ‘= (Kp - :u)ilga Mg ‘= (Kq - M)ilé
for given p, ¢ € [po, py]. Then, for ¢ € D, we have that

(np, (K —)p) = ((Kp — ) 7'& (K —m)p) = (&, 0) = (ng, (K — Ti)gp).

Since (K — ) is invertible on L2 it follows that (K — @) is invertible on the dual space (L2)',
and the same applies to (L2)". Consequently, (K — i)(D) is dense in (L2) as well as in (L2)’,
so that 1, and 7, coincide as linear functionals on (L2)" and on (L)', and so n, = n, € LEN L.
This implies that (K, — u) "¢ = (K, — p) "¢ for every € € D and every q € [po, pp)-

Let T" be a simple curve in D\ E° whose winding number with respect to every point in the

interval [\, A] is one, and let

P, = /F(Kp—v)*ld% P € [po, ppl-

Then the operators P, coincide on D and are bounded by a common constant, by (4.4). The
image im P, of P, is the sum of the generalized eigenspaces of K, over all eigenvalues of K,

which are contained in o, N[\, A]. In particular, the image of P, is finite dimensional, since K,
is compact. Since im P, = P,(D), we thus have

imP,=PF,( ()| L% =imP.
9€[po,pp)

In particular, im P, does not depend on p.

Since K is self-adjoint on L2, its restriction to im P, is also self-adjoint on im P, and so every
eigenvalue of K, when acting on im P, is real, for any p € [po, py]. This applies in particular to
A. We thus see that 0,(K) N D = {A}, that im P» C D, and that im P is in fact the eigenspace
of K associated to A, for any p € [po, py]. Furthermore, every eigenvector of K for the eigenvalue
A in L2 is contained in ﬂqe[po,pg] LY,

Q.E.D.

4.2 Approximate units of Herz-Schur multipliers

Let G be a locally compact group, endowed with a left-invariant Haar measure dz. If K is a
continuous function on G, we shall denote by A(K) : Co(G) — C(G) the convolution operator
given by

AME)(p) ==K *p, ¢ Co(G);

here, A denotes again the left-regular representation. In case that A\(K) extends to a bounded
operator on LP(G), for some p € [1,00[, we shall denote the (unique) extension also by A(K).

The following result is a consequence of the well-known theory of Herz-Schur multipliers and
Fourier-Figa-Talamanca-Herz-Eymard algebras, see e.g. [9], [5], [6]. For the convenience of the
reader, we shall provide a proof.
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Lemma 4.4 Let K € C(G), and assume that N(K) is bounded on LP(G). Let ¢ € L¥ (G) and
n € LP(G). Then also \((¢ * 1) K) is bounded on LP(G), and

A % D E) | Lo ro < [ 10 [p A || Lo — - (4.5)

Proof. If f,g € Cy(G), then
N@E L) = [ [ K@@= 09l dyds
= [ [ [ K@uwit o w9 dyda d
= ///K(y)w(wt)n(y’lmt)f(y’lw)g(x)dydxdt
= [t ) vng) .

where we have used the abbreviation hi(x) := h(xt). Thus, by Holder’s inequality and Fubini’s
theorem, we obtain

A+ D), 9)
< [INE) ool lpllnglly de

1/p , , 1/p'
< NSl ([ [norispayae) ([ [1oaor s aa)
— A ez Il 1l LA gl

This implies (4.5).

Q.E.D.

Assume next that G is a Lie group. If T' is a right-invariant bounded operator on LP(G), then

it follows from the Schwartz’ kernel theorem that there exists a unique distribution K € D'(G),
such that

To=Kxp=AK)(p), forevery e D(G). (4.6)

We shall then also denote K by Td.. Inversely, given a distribution K € D'(G), we shall
denote by A(K) : D(G) — C*°(G) the convolution operator given by

MEK)(p):=Kxp, ¢€DG).

In case that A(K) extends to a bounded operator on LP(G), for some p € [1, oo[, we shall again
denote also the (unique) extension by A(K). The following proposition makes use of ideas in
[13], [5].

Proposition 4.5 Let G be an amenable Lie group, let 1 < p < oo, and let K € D'(G), such
that the convolution operator A\(K) is bounded on LP(G). Assume further that A\(K) € C*(G).
Then N(K) is bounded on LY(G) for every exponent q lying between 2 and p, and there erists a
sequence { Ky }n in Co(QG), such that

Tim [IACK) = M)l 22 = 0, (@)
and
||)\(Kn)||Lq_>Lq < ||)\(K)||Lq_>Lq Vn € N, (48)

for every q lying between 2 and p.
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Proof. Assume first that K € C(G). We choose an increasing sequence {A,, }nen of compact
subsets of G such that G = |,y An. Let € > 0. Since G is amenable, we can find compact
subsets U,, of G such that

(A, 'Un) A Uy

<e€
|Un|

Put

1 -
— 1y, * 1y, € Co(G).

(z)n,e = |Un|

For any ¢ € [1, o0, let us put

1
wn,a = WHUH? 777175 = W]IU”, n € N.

Then of course
nelly =1 =lnmellp, neN,
and
Pne = Une * e
If a € A, then

1 P
A n—np:—/ﬂ ) —1p. ()] dt
N@ne = tellp = 1 [ [ (a7 = T, (0)
1
= — [ 1, t)dt <e.
7 L Hamen
Observe that ¢, .(e) = 1. Therefore, for any a € A,,, we have that

[Pne(a) =1 = |dne(a) = dnele)| = \/wn,a(t)[nn,a(aflt) — Tn,e] dt|
/p.

IN

Hwn,aHp’H)‘(a)nma - nn,aHp < e'

Thus, if we put ¢y, := ¢, 1/,,, n > 1, then we see that the functions ¢, tend to 1, uniformly
on compacta. Let us put K, := ¢, K. Then K,, € Cy(G), and, by the preceding proposition, the
K, satisfy (4.8). Moreover, since A(K) € C*(G), there exists a sequence {f;}; in Co(G) such
that lim;j_.c |[|A(K) — A(f;)|| = 0, where by || - || we denote the operator norm on L?*(G). Since
limy, oo ||f; — &nfjll1 = 0, for every f; we see that lim, . [|A(f;) — AMénfj)|| = 0. Moreover,
by Lemma 4.4, we have

[IACE) = A(KG) | IACK) = AUDI + [IA) = AMdnf)I + (M (f5 = K]

<
<2 |IME) = AFDI+1AG) = Adnfi)ll-
Thus, given € > 0, we may first choose j such that ||[A(K)—A(f;)|| < €/2, and then ng € N* such
that [|A(f;) — AMénfj)|| < /4 for every n > ng. Then [|A(K) — A(K,)|| < ¢ for every n > ny, i.e.
(4.7) is also satisfied.

For an arbitrary K € D'(G) satisfying the assumptions of Prop. 4.5, we may argue as

follows. We fix an approximate identity {y;}; in D(G) such that ||x;|[1 = 1 for every i, and put
K® := y; x K. Then K® € C(G). Moreover,

M) = AMED)] < ) = AN+ A = Al * )+ IO * (f = K|
<2 |JIME) = AUDI 115 = xi = fills
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where {f;}; is again a sequence in Cy(G) such that lim;_. [|A(K) — A(f;)|| = 0. Thus, arguing
similarly as before, we see that

lim [|A(K) — M(KD)|| = 0.

Let us put K W= ¢, K@ € Cy(G). Then, we know already that
A | za—ra < [IME D) [La—ro < Gl lIAE) [9— 20 = [N | Loz
Moreover, we have

[IAE) = MED)| < IAE) = AED)] + IAED) = AED)].

v

Thus, if £ > 0 is given, we may choose i such that ||[A(K) — A(K®)|| < /2, and subsequently
ng € N* such that ||[\(K®) — /\(Kﬁz))H < &/2 for every v > ng. Then ||A(K) — /\(Kﬁz))H < ¢ for

every v > ng. This shows that we may find a subsequence K, among the K,(,i) satisfying (4.7)
and (4.8).

Q.E.D.

5 An analytic family of compact operators

Let us now choose a fixed sub-Laplacian L on G, and denote by {e™**};-¢ the heat semigroup
generated by L. We recall some well-known facts about this semi-group (see e.g. [15], also for
further references).

For every t > 0, e I is a convolution operator

e L f = hyx f, (5.1)

where the {h;};~¢ form a 1-parameter semigroup of smooth probability measures in L!(G).
Moreover, as a consequence of Gaussian estimates for the heat kernels, one has the following
extension of Lemma 5.1 in [15], whose proof carries over to the present situation.

Proposition 5.1 Let s be a subspace of g complementary to n, for instance s = a+ b, so that

the mapping s x N 3 (S,n) — exp(S)n € G is a diffeomorphism from s x N onto G, and fix a
norm |- | ons. For any a > 0,7 € N, put

hi"j(exp(S)n) — |S|jea‘5‘h1(exp(5)n), (S,n) € s x N.

Then hq; € LY (G). Moreover, there is a constant Coq > 0, such that

991 < G (3 +1). (5:2)

If x is any continuous, real or complex character of G, with differential dy € g¢, then
x(exp(S)n) = edX(%) We therefore have the following

Corollary 5.2 xh; € L'(G) for every continuous character x of G.
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From now on, we shall make the following

Assumption. ¢ € g* satisfies Boidol’s condition, and §2(¢)|, is closed.
Moreover, we assume and p € [1,00[, p # 2, is fixed.

Then, since ¢ satisfies (B), there exists at least one root A of g, such that |y is a non-trivial
root of the g(¢)-module g/p (see [2]). Consequently, there exists at least one index i € {1,...,d},
such that

)\i’g(f) #0

and (gj, +p)/(gj,+1 +p) # {0}. Notice that the latter condition is equivalent to €;, # 0. Choose
¢ minimal with these properties, and put

p:=(p,...,p,2,2,...,2), (5.3)

where the last p occurs at the i-th position.
Then, for T € p, we have

d i
1 1 1
(0p — 03) Z 5JkTJk Z 5Jk71k § :5 5 Tin (T (1; - 5) E :sjijk (T)
k=1 k=1

and for X € a + n one has

G- 0 = L= 5T cmix
D 2 - » 9 ETk

Thus, if we define the real character v of g by

X) :Zz—:jijk(X), if X ep,

)= Zeka(X), if X €a+n,

then L
ApAT (exp(X)) = 272" X ey (5.4)

Moreover, since 7, (T') =0 for 1 < k < i and T € g(£), we have
1/|g(4) = 5]-1,7'%\9(@ # 0. (5.5)
For any complex number z in the strip
$i={CeCs Im¢] < 1/2},
let A, be the complex character of G given by
A (exp(X)) := e~ X)X ey,
and . the unitary character
Xz(exp(X)) = e Re(V(X) X e

Since, by (5.4),

-1
A() XZA()A2 )
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if we define p(z) €]1, 00| by the equation

Im(2) =1/2—1/p(2), (5.6)

we see that the representation 77, given by

(@) = A (@)m(z) = xo (o)t (2), z€C, (5.7)

is an isometric representation on the space LP(*)(G/P, ().
Observe that for 7 € R, we have p(7) = 2, and 7] = x, ® 7y is a unitary representation on

L?. Moreover,
Ty ™~ Mgy, (5.8)

since the mapping f — X, f intertwines the representations x, ® 7y and my_,,.
Let us put
T(Z) = ﬂf(hl) = TI'g(Azfn), z €3,

and let us shortly write

LP = [P(G/P,{), 1<p< oo,
where P is given by (5.3).
Since, by (3.24), ~
T(z) = m{ (A 050 hy), (5.9)

it follows from Cor.5.2 and Prop. 3.1 that the operator T'(z) leaves LY invariant for every
1 < ¢ < o0, and is bounded on all these spaces. Much more is even true. Let us write T,(z) in
place of T'(z), if we consider T'(z) as a bounded operator on L7. The spectrum of T;(z) will be
denoted by o4(%).

Proposition 5.3 For every q €]1,00], the mapping ¥ > z — Ty(z) is an analytic family of
compact operators in the sense of Kato ([11]). Moreover, if T € R, then T5(7) is self-adjoint on
L2,

Proof. By Thm. 2.2, the orbit (/) is closed. Moreover, Cor. 5.2 shows that A, h; € LY(G),
and consequently T'(z) = m;(A,h1) is a compact operator on L2. On the other hand, in a similar
way we see from (5.9) that T'(z) is bounded on LY, for every 1 < ¢ < oo. Since L7 is a mixed
LP-space of the type LP(X, L?(Y)) considered in Section 4.1, we may apply Thm. 4.2 to conclude
that T;(2) is compact for every g €]1, oo|.

Next, let ¢ € ¥ be fixed, and consider T'(¢ + z), for |z| sufficiently small. We have

(C + Z) =Ty Ac+zh1 (5.10)
7=0
where ‘ B '
S i=mp((volog)! Achy) =i ((vo log)JACAQAglhl).
By Prop. 5.1 we see that
1Sjll a7 < C]“F( +1), (5.11)

- 2
where the constant C; > 0 stays bounded whenever ¢ runs through a compact interval. Moreover,
arguing for S; as we did for T(z) before, one finds that S; € K(L9), for every ¢ €]1,00[. Thus,
by (5.10) and (5.11), the mapping z +— T,(z) is holomorphic from ¥ into K(L9), for 1 < ¢ < oo
(it even extends to an entire mapping from C into K(L9).)
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Finally, if 7 € R, then 7} is a unitary representation on L2, so that T(7)* = g (h1)* =
my (hi) = 7 (ha) = T(7).

Q.E.D.

We can now prove the following perturbation result.

Proposition 5.4 Let 1 < pg < 2. There exist an open neighborhood U of a point zy € R in the
complex strip 3 and holomorphic mappings

A:U—C
and
¢&:U— [ L7
Po<p<p;)
such that £(z) # 0 and
T(2)&(z) = M(2)&(z)  for every =z € U. (5.12)

Moreover, shrinking U, if necessary, one can find a constant C > 0 such that

1€G)Is < € for every 2z €U, p € [po, pg)- (5.13)

Proof. Let zp € ¥ be real. Then, by Prop. 5.3 and Prop 4.3, the LP- spectrum of T}(zo)

is independent of p, and agrees thus with o2(2p). Moreover, for every non-trivial eigenvalue

Ao € 02(20) of T'(2p), every generalized eigenvector & associated to Ag is in fact an eigenvector,

lying in D := (N, <p<pr LP. Let us for instance choose for \g the largest eigenvalue of T'(zg).
Consider the three analytic families

{T,(2)}sex, for q=po,2,pp.

By choosing zy in such a way that Ag is a non-branching eigenvalue for all three analytic families
and applying analytic perturbation theory (see [11]), we may find an open connected neigh-
borhood U of some real point zp € R in ¥ and three holomorphic families U 3> z — A;(z) of
eigenvalues for the operator T,(z), ¢ = po,2,p), which all coincide at zp with the eigenvalue
Ao. Moreover, we may choose a neighborhood W of Ay such that

Wnoy(z) ={N(2)} for z€U, q =p0,2,p6.

Let
Pye) = [ (1) = du, e

where ' is a circle in W winding around Ag once. By shrinking U, if necessary, we may also
assume that the curve I' separates A\q(z) from the remaining elements of o4(2), for every z € U
and ¢ = po, 2, py. Then P,(z) projects onto the generalized eigenspace E,(z) of Ty(z) associated
with the eigenvalue \;(z), for ¢ = po,2,p). Moreover, D is the core considered in the proof
of Prop.4.3, and we had seen there that, for real z € U, the restrictions of the resolvents
(T,(2) — u)~* to D do not depend on p, so that the same applies to the projectors P,(z). Since
P,(z) depends holomorphically on z, it follows that

Py(2)|p = Py(2)|p for every z€UNR, q=po,2,pg (5.14)

Moreover, since we may assume that P;(z) is uniformly bounded on L%, for z € U and q =
P0, 2, p, by interpolation we derive from (5.14) that

1P2(2)¢l|7 < Clléll 7 V2 €U, p € [po. pols § €. (5.15)
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Choose now & € D\ {0} such that T'(z9)& = Moo, and put
£(2) == Pa(2)&, z€U.

Then £(z) € D\ {0} for every z € U, (5.13) holds because of (5.15), and the mapping z — &(z) €
D is holomorphic with respect to every LP-norm, py < p < p{,, provided we choose U sufficiently
small.

Furthermore, for real z € U, we have T'(2){(z) = A(2)&(z), and since both sides of this
equation depend holomorphically on z, it remains valid for every z € U.

Q.E.D.

6 The proof of Theorem 1

We have to show that, under the assumptions made in the previous section, there exist a point
Ao in the L?-spectrum of L and an open neighborhood U of Ay in C, such that every LP-multiplier
F € Cx(R) extends holomorphically to Y. Since o2(L) = [0, 00[=: Ry, we may restrict ourselves
to multipliers on R;.

Lemma 6.1 Let 1 < p < oo, and let F' € Mp(L) N Coo(Ry). Then F(L) € C*(G), and F(L) is
bounded on L1(QG) for every q lying between p and p’. Moreover, there exists a constant C > 0,
such that

1 1 1 1
F(D)||pire <C, if |- —=|<|>— 2] 1
IF(L)lpa—re < C, if Iq 2\_!p 5| (6.1)

Proof. Since F' € Cy(Ry), there exists a sequence of functions of Laplace transform type
Zn(N) = [ @n(t)e M dt, where ¢, € Cp(Ry), which converges uniformly to F (see [15],
Prop.2.1). Moreover, if ¢ is a real valued function on Ry, then ¢ is real valued too, as is
the convolution kernel ¢(L)d. = [5° (t)h: dt associated to ¢(L). Let ay, := Rep, By := Im ey,
and F} := Re F, F5 :=Im F. Then Fj is the uniform limit of the &,,, and F5 is the uniform limit
of the (3, so that consequently, for every real-valued function f € D(G), one has

Fi(L)f = lim a(L)f and Fy(L)f = lim G,(L)f

in L?(G). This shows that the Fy(L)f and Fy(L)f are real-valued functions, whence

1/p
IF@l = ([IR@AE + [B@A@ P2 ds) = max(F) | FAL) ).

Hence Fy and F are LP-multipliers for L too, and since Fy(L)* = F1(L) = Fi(L) as well as
Fy(L)* = Fy(L), we see that Fy(L) and Fy(L) are also bounded on L (G). This shows that
F(L) = Fy(L) + iFy(L) is L -bounded, and (6.1) follows by interpolation.

Q.E.D.

In view of Lemma 6.1, we may and shall assume in the sequel that 1 < p < 2. Let K := F(L)0d,
be the convolution kernel of F(L), so that F(L)p = K x ¢ = A(K)yp, for ¢ € D(G). According
to Prop. 4.5, choose a sequence { K}, in Cy(G) such that

Jim [[AK) = AKn)||2—p2 =0, (6.2)
and
NAE )| La—ore < ||MK)||pamra Yn €N, (6.3)
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for every ¢ lying between 2 and p.
We now apply the transference theorem in order to conclude that

i (Ko)ll o ey < IAME ) o) ()o@ TR €N, 2 € 2. (6.4)

To this end, recall that our representation 77 acts isometrically on a mixed LP-space of the
type LP(X,L?(Y)), with p = p(z). Such a space can be embedded into an LP-space. Namely,
L?(Y) is isometrically isomorphic to a subspace of LP(Z) (see [16] Lemme 1 or [7] Corollary 1).
Then of course LP(X, L?(Y)) is isometrically isomorphic to a subspace of LP(X x Z). However,
the proof of Theorem 2.4 in [3] remains valid also for bounded representations on closed subspaces
of LP-spaces, and we can thus apply the transference theorem in [3] to obtain (6.4).

Remark. (6.4) is an immediate consequence of the inclusion A(§)A, C A, of Theorem A in
[7] and Theorem 6 in [8]. It seems that Herz understood transference very well, but in his
publications rather concentrated on abstract results (notably in [7]) and made explicit only few
consequences. We felt that in case of (6.4) (as in section 4) re-proving certain more or less known
results is more convenient then explaining how to translate and properly combine known results
to get what we need.

From (6.1), (6.3) and (6.4) we get

le%(K”)HLﬁ_;Li) <C forevery ze€X,, (6.5)

p(z
where Y, denotes the smaller strip

1 1
Ep::{CEC:\ImC|<];—§}.

Next, letting pg := p, choose holomorphic families A(z) of eigenvalues for 7j = T'(z) and
associated eigenfunctions (z), z € U, as in Prop. 5.4, and assume w.r. that U C ¥,,.

Fix ¢ € C§°(G/P,¢) such that (£(z),v) # 0 for every z € U (if necessary, we have to shrink
U another time to achieve this), and consider the complex functions

hp:U—C, z— (mj(Kn)&(2),v), neN,

which are holomorphic in U.
By (6.5) and (5.13) we obtain

hn(2)] < Nl (Bl s 7 @) b Wl < © Yz € Uin e,

The family of functions {h,}, is thus a normal family of holomorphic functions, and so, by the
theorems of Montel and Weierstra8}, there exists a subsequence {h,}; which converges locally
uniformly to a holomorphic limit function A on U.

Now, if z € U is real, then the representation 7} is unitary, and since, by (6.2), A(K},)
converges to A(K) in C*(G), as n tends to oo, it follows that h,(z) converges on U N R to
(m (K)E(2), 1), ie.

h(z) = (7; (K)&(2),v), ze€UNR. (6.6)

Let pu(z) := —log A(z), z € U, where log denotes the principal branch of the logarithm. Then p
is holomorphic on U, and from 77 (h1)£(2) = T'(2)£(2) = A(2)§(z) we obtain that dnj(L)&(z) =
p(2)€(2). From (6.6) we therefore get (compare [15])

h(z) = (7 (F(L))E(2), ) = (F(dr(L))E(2), ) = F(u(2)) (€(2), ),
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i.e.

h(z)
(£(2),9)
Now, clearly the right-hand side of (6.7) extends holomorphically to U, and thus F'opu extends

to a holomorphic function on U.
However, from Thm. 2.2 and formula (5.8) we deduce that

Fou(z) = VzeUNR. (6.7)

lim |77 (h1)]] = 0,

|7|—o0

hence A(7) — 0 and u(7) — +o00 as 7 — oo. Thus the function p is not constant, and so, varying
the point zp € U N R slightly, if necessary, we may assume that u/(z9) # 0. Then p is a local
bi-holomorphism near zg, and thus F' has a holomorphic extension to a complex neighborhood
of p(z0).

Q.E.D.

7 An example of a closed orbit whose restriction to the nilrad-
ical is non-closed

Let g be the Lie algebra spanned by the basis
B = {Ra S7T7X7}/7 Z, M17M27N17N27 }7
with non-trivial brackets given by

[TaX]:_Xv [T,Y]:K [X7Y]:Z’
[R7 T] = Ml, [R, Ml] - M27 [R') MQ] = _MQ’
[S,T] = N1, [S,N1] = Na, [S, Nao] = Ns.

Let a, § € R\ {0}, and denote by ¢ the element of g* for which
0Z) =1, (M) = a, £(No) = B, £(U) =0

for all other elements U of the basis B.
The stabilizer of £ in g is the subspace

g(¢) = span{T, Z, N1 — No, My + Ms}.

Let
g(z,y,r,s,n,m) = expxX expyY exprRexp sS expmMyexpnN,.

Then the coadjoint orbit 2 of ¢ is the subset
Q= {Ad*(g(z,y,7,8,m,n) ") : x,yr s mncR]}.

Denote by
B* :={R",S*"T", X", Y", Z", M{, M5, N{, N3, }

the dual basis of B. Then
Q = {—mR* +nS"+(ale"=1+r)+ 6 —1—5)—zy)T"+a(l —e ")M]
+ ae "M5+p(e® —1)NT + e’ Ny —yX* +aY*"+ 2" : x,y,r,8,m,n € R}
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We see that the restriction of €2 to the nilradical n = span{X,Y, Z, M1, M3, N1, N2} is not closed,
since, letting r tend to +o0co and s to —oo, the other parameters being fixed, one finds that the
functionals
aM{ + Ny —yX* +a2Y*+Z*

lie in the closure of §|,.

If o/ > 0, then a(e™" —1+7r)+ (e’ —1—s) — xy tends to infinity, provided r tends to 400
and s tends to —oo whereas z,y stay bounded. Hence the orbit 2 is closed, whenever a/3 > 0.

On the other hand, € is not closed if &/ < 0, since then the element a M7 +3N; is contained
in the closure of the orbit ( take s := W and let r tend to +o00.)

It is easy to see that the subspace p := span{T, Z,Y, M1, Ms, N1, N2} is the Vergne polariza-
tion for /£ associated to the composition sequence

g=9020612...Dg10= {0},
where g; is spanned by the j + 1-st to last element or the ordered basis
R, ST, X,Y, Z, My, My, N1, Ny

of g.
The root A associated to the quotient space

Spal’l{X,Y,M]_,MQ,Nl,NQ,Z}/Span{y7 M17M27N15N27Z}

is the linear functional v := —T™. In particular ¢ does not satisfy Boidol’s condition (B).

To fix the ideas, assume now for instance that o > 0, § > 0 (which means that 2 is closed),
and consider a real sequence {7y }rey such that limg_, 7, = +00. Then the sequence of orbits
Qr = Q+7, T, k €N, tends to infinity in the orbit space. Indeed, otherwise, for a subsequence,
also indexed by k for simplicity of notation, for every k there would exist an element

by = (—mpR +npS" +ale™™ —14r) + B(e’™ — 1 —sp) —apyp + 7)1
+ a(l—e )M+ aeT "My + B(e®F — 1)Ny + Be’ Ny — yp X" + 2 Y* + 2% € Q,

such that limy_, o £ existed in g*. Hence the sequences

{oe}es {uktes {mete, {nete, {ae™ i, {Be’ hi, {ary — Bsk + Ttk

would converge. Since 73 tends to +oo, it followed that ary — (s would tend to —oo for n — oc.
But {ari}r and {—[(sk}r cannot tend to —oo for n — oo, since then the sequences {ae™"*}y
and {fe’* }r would diverge.

This contradiction shows that € tends to infinity in the orbit space as n tends to infinity.
In particular, we see that in this example

Jim [Jme - ()] = 0,
for every f € LY(G).

Q.E.D.
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