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Introduction Our results are more general than that of G lowacki: we drop the

symmetry assumption and allow non-smooth operators of arbitrarily high order. Moreover

trivial but useful changes - we require only discrete family of dilations which are not

necessarily diagonal, we allow order to be a complex number and we allow operator valued

kernels.

We think that more important is simplification of the proof.

The idea of the proof is as follows. We proceed by induction on the dimension of the

group. The abelian case is easy. Then (as in [4]) we consider representations induced from

the characters of the center. Estimate in representation induced from trivial character is the

inductive assumption. This estimate extends to ”nearby” representations. Homogeneity

will give as the full set of representations, provided we can estimate L2 norm by our

operator. Here is the novelty of our approach - we observe that the estimate ‖v‖ ≤ C‖Pv‖

is equivalent to ‖(1 + P ∗P )−1‖ < 1. Next, using the estimates from previous steps we

prove that (1 + P ∗P )−1 is ”locally” in C∗(N). Then, by the theory of C∗ algebras, the

norm is realized in some irreducible representation. But in irreducible representation our

operator has discrete spectrum, so the Rockland condition implies the estimate. Tricky

part is that we must use kind of bootstrap argument — we are unable to give direct proof

of various properties of (1 + P ∗P )−1 and we derive them via comparison with ”good”

operator R. In other words, before we prove the theorems we need to know that there is

at least one operator for which the conclusions are valid. Such an operator do exists —

we take (powers of) a generator of (stable) semigroup of probability measures, for which

most of the theory is the same as general case, but few crucial steps are much easier.

Preliminaries

Let N be a nilpotent Lie group with a discrete family of dilations {Dk}k∈Z. We

assume that

Dk(x)Dk(y) = Dk(xy),

1



and

lim
k→−∞

Dkx = 0

The homogeneous dimension q of N is defined by the formula

|Dk(F )| = 2kq|F |

for all bounded measurable F ⊂ N .

A distribution T on N with values in linear operator between some finite dimensional

vector spaces is said to be a kernel if T coincides with a locally finite measure outside any

neighbourhood of origin (more general the convolver norm of T times any C∞c (N − {0})

function is finite and . . . ). A kernel T is said to be a homogeneous kernel of order r ∈ C

if T is homogeneous distribution of degree −r − q, that is satisfies

(f ◦Dk, T ) = 2rk(f, T )

for all f ∈ C∞c (N) and t > 0.

Remark. Ability to use vector valued kernel seem to be quite useful. We consider

operator valued kernels just to make the theory more symmetric. On the other hand, one

may consider vectors of distributions with different homogeneity on each coordinate —

but we see no use of them. Also, multiplying values by operator instead of scalar can be

reduced (under the technical conditions we need) to coordinates of different homogeneity.

A kernel T is said to be an almost homogeneous kernel of order r ∈ R if for every

f ∈ C∞c (N − {0}) 2−rk‖f ◦DkT‖M1 is bounded when k goes to ∞.

We say that T is a kernel of positive order at most r if either T is a homogeneous

kernel of order s, 0 < <(s) ≤ r or T is an almost homogeneous kernel of order s, 0 < s < r.

A kernel is called regular if it coincides with a smooth function away from the origin.

We will also consider truncated kernels: T1 is truncated kernel correspodning to a

homogeneous kernel order r, if T and T1 are equal in some neighborhood of 0 and T1 is

compactly supported. If <(r) > 0, then we may aproximate T by truncated kernels —

defining Tn by the formula (f, Tn) = 2r(n−1)(f ◦D−n+1, T1) we have

‖(Tn − T ) ∗ f‖ ≤ C2−<(r)n‖f‖.
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If T is regular we will assume that T1 is obtained from T by multiplication with smooth

function.

Example Let h be a positive Schwartz class function on N such that
∫
h = 1. Let

< T, f >=

∞∑
k=−∞

2rk(f(0)−
∫
h(x)f(Dkx)dx).

For small enough positive r, T is a regular homogeneous kernel of order r. Moreover, T

generates a semigroup of probability measures. As the Levi measure equals T on N −{0},

it has density and is infinite, so (by Janssen) the semigroup has densities in L1.

For a unitary representation π of N on a Hilbert space H and a kernel T of order r,

<(r) > 0, the operator π(T ) is defined on the space C∞(π) of smooth vectors for π by

(g, π(T )f) = (φf,g, T )

where φf,g(x) = (g, π(x)f). Equivalent definition is:

π(T )f = T ∗ ψf (e)

where ψf (x) = π(x)f .

As a special case of representations we get images in quotient of N . If the divisor

is a homogeneous subgroup (that is invariant under D), then on quotient is well defind

dilation, and the image of a homogeneous kernel is a homogeneous kernel of the same order

(and similarly for almost homogeneous kernels).

(1.1). Lemma. If B is compactly supported distribution, A and AB belong to C∗(N),

then for any unitary representation π of N

π(A)π(B) = π(AB)

on C∞(π).

Main theorems

(1.2). Theorem. Let P be a homogeneous kernel of order r, <(r) > 0. The following

conditions are equivalent:
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a) There exists homogeneous kernel S of order s, <(s) = <(r) such that for every non-

trivial irreducible unitary representation π of N , the operator π(P ) is injective on the

domain of π(S).

b) If T is a kernel of positive order at most <(r), there exists a constant C such that

∀f ∈ C∞c (N) (‖Tf‖ ≤ C(‖Pf‖+ ‖f‖)).

c)

∀t>0e
−tP∗P ∈ C∗(N)

d)

∀t>0(1 + tP ∗P )−1 ∈ C∗(N).

If T additionaly is a regular kernel, then each of the above is equivalent to following:

e) For every nontrivial irreducible unitary representation π of N , the operator π(P ) is

injective on the space C∞(π).

f) For every integer m > 0, and every kernel T of positive order at most 2m<(r) there

exists a constant C such that

∀f ∈ C∞c (N) (‖Tf‖ ≤ C(‖(P ∗ P )mf‖+ ‖f‖)).

If T is regular and takes values in square matrices, then a–f is equvalent to g:

g) For every integer m > 0, and every kernel T of positive order at most m<(r) there

exists a constant C such that

∀f ∈ C∞c (N) (‖Tf‖ ≤ C(‖Pmf‖+ ‖f‖)).

If one of the equivalent conditions above is satisfied and P1 is truncated kernel correspond-

ing to T , then P ∗1 P1 is essentialy selfadjoint on C∞c (N).

Remark The conclusion of (1.2) means that two operators satisfying assumption of

(1.2) have equal domain, so the domain in assumption of (1.2) can be chosen in canonical

way.
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(1.3). Theorem. If T is positive definite, regular homogeneous kernel of order r > 0

and satisfies one of the equvalent conditions of (1.2) , then:

a) For every unitary representation π of N the operator π(T ) is essentialy selfadjoint on

C∞(π), moreover T is essentialy selfadjoint on C∞c (N)

b) For any complex s, <(s) > −q/r the operator T s corresponds to regular kernel of

order sr and if <(s) > 0, T s satisfies conditions of (1.2)

c) The semigroup e−tT generated by T consists of smooth functions and satisfies

|∂αe−tT (x)| ≤ Cα(1 + |x|)−q−r.

(1.4). Theorem. If T is regular homogeneous kernel of order r, <(r) > 0, and T satisfies

one of the equvalent conditions of (1.2) , then the polar decomposition of T consists of

regular kernels, that is, there exists a positive definite, regular homogeneous kernel A of

order <(r) (which satisfies equvalent conditions of (1.2) ) and a regular homogeneous

kernel U order =(r) such that

T = UA

and U gives (injective) isometry (also A is injective).

In the abelian case, the proof is easy: Fourier transform P̂ of P is a continuous

function, Rockland condition states simply that |P̂ (z)| = det(P̂ (z)∗P̂ (z))1/2 6= 0 for z 6= 0

so |P̂ | (by homogeneity) majorises every continuous homogeneous function of the same

order — which is the conclusion of (1.2) . Condition e−tP
∗P ∈ C∗(N) is equivalent to

e−t|P̂ (z)|2 → 0 when z → ∞, which, thanks to homogeneity, is equivalent to P̂ (z) 6= 0 for

z 6= 0.

Denote the center of N by V , and choose a linear complement Ñ to V invariant under

the action of dilations.

For a functional z ∈ V ∗ we shall denote by πz the unitary representation of N induced

by the character

v → ei(v,z)

from the center V of N .
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The next three lemmas can be proved following the proof of (3.2) and (3.19) in [4].

One should note that regularity of kernels in [4] is only used to prove that truncated kernels

of order 0 are bounded on L2 - however the inductive argument in the proof of (3.19) works

also for truncated kernels of order 0 (it does not work without truncation). Also the kernels

TI = XIT are no longer homogeneous, but only almost homogeneous. Fact that we admit

complex orders and discrete dilations only requires that we change the notation.

(1.5). Lemma. Let P be a homogeneous kernel of order r, <(r) > 0 such that for every

kernel T of positive order at most <(r) there exists a constant C such that

∀f ∈ C∞c (Ñ) (‖π0(T )f‖ ≤ C(‖π0(P )f‖+ ‖f‖)).

For all t > 0 and for every kernel T of positive order at most <(r) there exists another

constant C such that for all |z| ≤ t

∀f ∈ C∞c (Ñ) (‖πz(T )f‖ ≤ C(‖πz(P )f‖+ ‖f‖)).

(1.6). Lemma. Let P and T be as in (1.5) . There exists homogeneous kernel R of order

r supported on V such that

∀f ∈ C∞c (N) ‖Tf‖ ≤ C(‖Pf‖+ ‖Rf‖+ ‖f‖).

Moreover there is l such that

∀f ∈ C∞c (N) ‖Tf‖ ≤ C(‖Pf‖+ ‖(I −∆V )lf‖.

(1.7). Lemma. Let P be a homogeneous kernel of order r, <(r) > 0 which satisfy the

conclusion of (1.2) , that is for every kernel T of positive order at most <(r) there exists

constant C such that

∀f ∈ C∞c (N) (‖Tf‖ ≤ C(‖Pf‖+ ‖f‖))
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and let P1 be the corresponding truncated kernel. Let η be a positive function such that

there exists a neighbourhood K of e and a constant C satisfying

sup
z∈K

max
|α|≤r+q

|Xαη(xz)| ≤ Cη(z).

Then for every ε > 0 there exists a constant C such that

∀f ∈ C∞(N) (‖[P1, η]f‖ ≤ ε‖ηP1f‖+ C‖ηf‖)

∀f ∈ C∞(N) (‖η−1[P1, η]ηf‖ ≤ ε‖ηP1f‖+ C‖ηf‖).

Moreover, P ∗1 P1 is essentially selfadjoint on C∞c (N).

Fix a compact set F ⊂ V such that 0 /∈ F and V − 0 =
⋃
kD

k(F ).

(1.8). Lemma.

∃C∀z ∈ F, f ∈ C∞c (Ñ)(‖f‖ ≤ C‖πz(P )f‖)

Let as see that (1.5) and (1.8) easily imply (1.2) . Indeed (1.8) and (1.5) imply

∀z ∈ F∀f ∈ C∞c (Ñ) (‖πz(T )f‖ ≤ C(‖πz(P )f‖+ ‖f‖) ≤ C1‖πz(P )f‖)

Using dilations, we have

∀z ∈
⋃
k≥1

Dk(F )∀f ∈ C∞c (Ñ) (‖πz(T )f‖ ≤ C1‖πz(P )f‖)

which, together with (1.5) gives the estimate. So it remains to prove (1.8) .

(1.8) is an immediate consequence of

(1.9). Lemma.

sup
z∈F
‖(I + πz(P )∗πz(P ))−1‖ < 1.

For f ∈ L1(N) define

‖f‖Alg = sup
z∈F
‖πz(f)‖

and let Alg be the completition of L1(N) with respect to ‖ · ‖Alg. Of course Alg is a

homomorphic image of C∗(N) so that (non-degenerate) representations of Alg are naturally

identified with representations of N . This also gives us a way to associate elements of Alg

with distributions on N .
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(1.10). Lemma. ∃f ∈ Alg∀δ

δ(f) = (1 + δ(P )∗δ(P ))−1

Taking (1.10) as granted we easily prove (1.9) : by the theory of C∗-algebras (see

[2] Lemma 3.3.6) there exists an irreducible representation δ of Alg(hence N) such that

‖f‖Alg = ‖δ(f)‖.

By Kirillov theory δ(f) is compact, hence being positive either has norm smaller then 1

(which is what we want) or has eigenvector with eigenvalue 1. But since

δ(f) = (1 + δ(P )∗δ(P ))−1

such an eigenvector must lie in the kernel of δ(P ). As δ is nontrivial this contradicts the

Rockland condition. So it remains to prove (1.10) .

(1.11). Lemma. Let R, S be closed densely defined operators on a Hilbert space. Put

A = R∗R, B = S∗S. Then

‖Re−tA‖ ≤ t−1/2,

‖e−A − e−B‖ ≤ 4‖R− S‖.

By the spectral theorem ‖Ae−tA‖ ≤ t−1. For v in dom(A)

‖Rv‖2 = (Rv,Rv) = (R∗Rv, v) = (Av, v) ≤ ‖Av‖‖v‖

and we have

‖Re−tAv‖2 ≤ ‖Ae−tA‖‖e−tA‖‖v‖2 ≤ t−1‖v‖2

If ‖R − S‖ is finite dom(R) = dom(S). Thanks to this, our operators give at least well

defined bilinear forms on dom(R) × dom(R) which provides dense common domain for

calculations. We have

A−B = R∗R− S∗S = R∗(R− S) + (R∗ − S∗)S.
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so

e−tA(A−B)e−(1−t)B = e−tA(R∗(R− S) + (R∗ − S∗)S)e−(1−t)B

= (Re−tA)∗(R− S)e−(1−t)B + e−tA(R− S)∗Se−(1−t)B

and

‖e−tA(A−B)e−(1−t)B‖ ≤ ‖(Re−tA)∗(R− S)e−(1−t)B‖+ ‖e−tA(R− S)∗Se−(1−t)B‖

≤ ‖Re−tA‖‖R− S‖‖e−(1−t)B‖+ ‖e−tA‖‖R− S‖‖Se−(1−t)B‖

≤ (t−1/2 + (1− t)−1/2)‖R− S‖.

Hence, using perturbation formula

‖e−A − e−B‖ = ‖ −
1∫

0

e−tA(A−B)e−(1−t)Bdt‖

≤
1∫

0

‖e−tA(A−B)e−(1−t)B‖dt

≤
1∫

0

(t−1/2 + (1− t)−1/2)‖R− S‖dt = 4‖R− S‖.

(1.12). Lemma. If R is a regular kernel generating a probabilistic semigroup, and R1 is

corresponding truncated kernel t,N > 0, then∫
etR1(x)2|x|N <∞

∫
|R1e

tR1(x)|2|x|N <∞

with uniform bound when N and t stay in a bounded set and t is bounded away from 0.

(1.13). Lemma.

∀t > 0(e−tP
∗
nPn ∈ C∗(N))

and

(P ∗nPn + 1)−1 ∈ C∗(N).
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P. The first claim implies the second, so we will prove the first. We choose η to

be polynomially growing, satisfy assumptions of (1.7) , and such that L2(η) ⊂ L1 – for

example (1 + |x|m) with m large enough. We have

|(P ∗nPnf, η2f)− ‖ηPnf‖2| = |(Pnf, Pnη2f)− ‖ηPnf‖2|

= |(Pnf, [Pn, η]ηf + η[Pn, η]f)|

≤ ‖ηPnf‖(‖[Pn, η]f‖+ ‖η−1[Pn, η]ηf‖)

Hence, by (1.7)

<(P ∗nPnf, η
2f) ≥ 1/2‖ηPne−tP

∗
nPnf‖2 − C‖ηe−tP

∗
nPnf‖2,

|=(P ∗nPnf, η
2f)| ≤ 1/2‖ηPne−tP

∗
nPnf‖2 − C‖ηe−tP

∗
nPnf‖2,

and

<(P ∗nPnf, η
2f) + 2C‖ηe−tP

∗
nPnf‖2 ≥ |=(P ∗nPnf, η

2f)|.

Next, if |=(z)| ≤ <(z),

∂t‖ηe−tzP
∗
nPnf‖2 = −2<(zηP ∗nPne

−tzP∗
nPnf, ηe−tzP

∗
nPnf)

≤
√

2|z|(|=(ηP ∗nPne
−tzP∗

nPnf, ηe−tzP
∗
nPnf)| − <(ηP ∗nPne

−tzP∗
nPnf, ηe−tzP

∗
nPnf)

≤ C ′‖ηe−tzP
∗
nPnf‖2

Consequently, e−zP
∗
nPn is a holomorphic family of bounded operators on L2(η). That

means ∀M > 0∃CM∀t < M

‖ηe−tP
∗
nPnf‖ ≤ CM‖ηf‖

‖ηP ∗nPne−tP
∗
nPnf‖ ≤ 1

t
CM‖ηf‖.

Next

e−tP
∗
nPn = etR1 +

t∫
0

e−sP
∗
nPn(P ∗nPn −R1)e(t−s)R1ds
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= etR1 +

t−ε∫
ε

+

ε∫
0

+

t∫
t−ε

= etR1 + I1,ε + I2,ε + I3,ε

Using similar argument as in (1.11) we see that ‖I2,ε‖L2,L2 and ‖I3,ε‖L2,L2 go to 0 when

ε goes to 0. Note that ∀ε > 0

‖
t−ε∫
ε

e−sP
∗
nPn(P ∗nPn −R1)e(t−s)R1ds‖L2(η)

≤ t sup
ε≤s≤t−ε

∥∥∥e−sP∗
nPn(P ∗nPn −R1)e(t−s−ε/2)R1

∥∥∥
L2(η),L2(η)

‖e(ε/2)R1‖L2(η) <∞

so I1,ε ∈ L1. Also etR1 ∈ L1 so e−tP
∗
nPn is a limit in operator norm of L1 functions so it

belongs to C∗(N).

(1.14). Lemma.

∀t > 0(e−tP
∗P ∈ C∗(N))

P. Since ‖P − Pn‖ tends to 0 when n goes to infinity, (1.11) implies that e−tP
∗P is

the norm limit of e−tP
∗
nPn . Hence, our claim follows from (1.13) .

(1.15). Lemma.

∀ρ ∈ Irr(N)(ρ(e−P
∗
nPn) = e−ρ(Pn)

∗ρ(Pn)

Let R be a symmetric regular ... By (1.5) we have

C0(‖Pf‖+ ‖f‖) ≥ ‖Rf‖

as P − Pn is bounded

C1(‖Pnf‖+ ‖f‖) ≥ ‖Rf‖

C2
1 (P ∗nPn + 1) ≥ R2

since is central, 0 ≤ and ...

(1 + C2
1 (1 + P ∗nPn))−1 ≤ (R2 + 1)−1.
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As both sides of the inequality belong to C∗(N) we have

ρ((1 + C2
1 (1 + P ∗nPn))−1) ≤ ρ((1 +R2)−1).

Similarly one shows that there is C2 so that

ρ((1 + C2
2 (1 +R2))−1) ≤ ρ((1 + C2

1 (1 + P ∗nPn))−1)

so there is a positive definite operator Ã such that

ρ((1 + P ∗nPn)−1) = (1 + Ã)−1.

Note that dom(Ã
1/2
n ) = dom(ρ(R)) and

C2(‖ρ(R)f‖+ ‖f‖) ≥ ‖Ã1/2
n ‖.

On C∞ρ we have

Ãe−tÃf = −∂te−tÃf = −∂tρ(e−tP
∗
nPn)f =

ρ(e−tP
∗
nPnP ∗nPn)f = ρ(e−tP

∗
nPn)ρ(P ∗nPn)f =

e−tÃρ(Pn)∗ρ(Pn)f.

In the last line we used the fact that on smooth vectors

(ρ(P ∗n)f, g) = (f, ρ(Pn)g)

so ρ(P ∗n) ⊂ ρ(Pn)∗. Hence we got equality

e−tÃÃf = e−tÃρ(Pn)∗ρ(Pn)f.

If t goes to 0 we have (on smooth f)

Ãf = ρ(Pn)∗ρ(Pn)f.

As smooth vectors are a core of ρ(Pn) we have dom(ρ(Pn)) ⊂ dom(Ã
1/2
n ). Since ρ(R)

majorises Ã
1/2
n (hence also ρ(Pn)) and smooth vectors are a core of ρ(R) we also have
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dom(ρ(R)) ⊂ dom(ρ(Pn)) so dom(Ã
1/2
n ) ⊂ dom(ρ(Pn)). This together imply that bilinear

forms associated to Ãn and ρ(Pn)∗ρ(Pn) are equal so Ãn = ρ(Pn)∗ρ(Pn).
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