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General setup
Let G be a connected Lie group, X; right invariant vector fields on G, which generate (as

a Lie algebra) the Lie algebra of G,

L:—ZX}.

If X, linearly span the Lie algebra of GG, then L is (up to first order term) the Laplace-
Beltrami operator (written in a funny way) for some Riemmanian metric on G. In general
L is a hypoelliptic second order operator.

L generates convolution semigroup on all LP, p > 1 (LP is with respect to left-invariant

Haar measure)

e f=pxf

pt are called heat kernel, p; > 0, py € C°(Q), pt+s = pt *ps. They solve the heat equation,
namely if f is in L?, u(x,t) = ps * f, then

—Lu = Oyu

limu(t, ) = f in L2

t—0

u is the unique solution which satisfies the initial condition and has uniformly (in ¢)
bounded L? norms on G x {t}.
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The closure A of linear span of p;, for t > 0 is a (commutative) subalgebra of L' called
the subalgebra generated by L. A is a x-Banach algebra.

Example If L is minus Laplacian on R”, then A is just set of radial L' functions.

L is positive definite and self-adjoint on L?(G) with respect to left Haar measure. By the

spectral theorem

P(L) = / FO)AE()

is well defined operator on L?(G).

Spectral decomposition of L and Gelfand transform on A are closely related. For each
A € sp(L) there is a smooth positive definite function ¢, such that mapping u — (u, ¢y)
is a multiplicative functional on A and L¢y = A¢y. If G is non-compact amenable group
then sp(L) = Ry.

If u € A and the Gelfand transform of u in ¢ equals F(\), then u* f = F(L)f.

In general F(L)f = u* f where u is a distribution — in the sequel we will identify F (L)
with the distribution wu.

We have Plancherel formula: there is a measure p on R such that if (the function identified

with) F(L) € L? then
HFwwéz/ﬁ%W%MM-

There is also inversion formula
F(L)@) = [ ox@F ).

1 is locally finite and polynomialy growing.

Remark On R™ Gelfand transform is basicaly the Fourier transform
F(L)(w) = F(|w]?).
We begun from the heat eqation, but we may also consider the wave equation on G x R
Lu = —0?u.

If u(0,-) = f and 0yu(0,-) = h, then

sin(v/L)

\/fh'

u(t,-) = cos(VL) f +



Two operators on non-unimodular groups
On non-unimodular groups there is another operator A built from X; and closly related
to L. For A the natural space is L? with respect to right-invariant Haar measure d,.g. We

may define A by the formula

<Af7 f>T - Z<Xjf; Xjf)r

where r means that the scalar product is with respect to d,.g. d,g is related to the left

Haar measure dg via the modular function m:
dr.g = mdg

Then we check that

X:m X:m
A:—Z(Xj+jT)Xj:L—Z 17X

m
Mapping f +— Uf = m'/2f is an isometry of L?(d,g) with L?(dg). We write

ij
2m

m—l/QLml/Q _ _Z(m—l/Qijl/Q)Q _ Z(XJ + )2

2 2

2
Hence, U intertwines the spectral resolutions of L and A — ¢ where ¢ = %1 > (Xj m) I

e A f = q * f, then

1/2 —tc

Pe=m"'""¢ q.

Finite propagaton speed for wave equation
There is a natural metric d (optimal control metric) on G associated to L. For this metric

we have

supp cos(tV'L) C B(r).
We have also finite propagation speed for A. This is related to L by the formula
cos(tV'L) = m'/?(cos(tvV/A = ¢)).
(1.1). Theorem. If F' is holomorphic and symmetric, such that
|F(2)] < Ce™,
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/ F(/O)Pdps < oo,

then u = F(\/L) € L*(G) and supp u C B(r). Conversly, if G admits nontrivial homo-
morphizm into R, uw € L2N A, supp u C B(r), then u = F(\/L) with F as above.

P. By euclidean Paley-Winer theorem supp F C [—7,7]. Now
F(VL) = / F(t) cos(tV/L)dt

so the first claim follows from finite propagation speed. For the converse note, that u =
F(v/L) with some F € L?(p1). Now, we take image under homomorphizm and again apply

euclidean Paley-Winer.



Questions
The basic question is:
Q: How does F(L) behave on LP, p # 2.
Remark. We are interested in real-variable F' so L must have real spectrum. The spectrum
of A on LP is complex for non-unimodular G and p # 2.
Below is an atempt to present state of art, giving more specific questions, and shortly
summarizing known answers.
Q1: Is A symmetric (if x = z*, then sp(z) is real).
yes if L'(G) is symmetric (for exponential G, D. Poguntke [24] gave characterization), M.
Christ and D. Miiller [7] show G and L with non-symmetric A, J. Ludwig and D. Miiller
[19] give a large class of counter-examples
Q2: Is it true that:

I F € C*Ry) = F(L) € L'(G)

yes if dim(G/[G, G]) = 1, real parts of roots are positive

yes if G is Iwasawa type, L distinguished [H], [CGHM] (as pointed out by D. Poguntke,
LY(G) is usually non-symmetric)

yes if G = R* x R™, adjoint action is semisimple, L = Lo + L1, Lo lives on R*, L lives on
R™ and is a sum of eigenvectors for adjoint action (unpublished).

no on Heisenberg group extended by hyperbolic dilations [7].

Q3: Is it true that:

Jab,ck supp F C [a,b] = sup ||F(tL)| .2 < C||F|lcx

yes if G is Iwasawa type, L distinguished (implicit in [11])
yes for groups considerd in this paper
Q4:Is it true that:

Fp2,0k,00 € CF (R ), [|F(L)][ Lo 1o < Csup [|9F ()| o

completely open — there is no Calderon-Zygmund theory on exponential growth groups,
newertheless, we expect some positive results.
Q5: Find smallest £ if the answer for one of the previous questions is positive

the critical index at infinity which we get in this paper is the best possible.



Assume that G = Ax N, L = X?+ L, X, generates A, Ly liveson N and [X1, L] = 2L;.
We consider N as a homogeneous group with dilations D;(x) = exp(ctX1)x exp(—ctX1),
¢ =log(2)/2. Note, that

DL =2FL.

N may be considerd as a stratified nilpotent Lie group, namely, its Lie algebra (which
may be identified with N via exponential map) is a stratified nilpotent Lie algebra. That
means there is ¢ (we say that N is of step ¢) such that

q
N=EV;,
j=1

Vi generates N and [V}, V;] C Vi, for every 1 < j,i < g. Usually, one assumes that Dy,
is a diagonal operator, and V; are eigenspaces, but our assumption is equivalent to saying
that D; = v/2U, where U is isometry with respect to the scalar product on V; associated
to L.

The homogeneous dimension ) of N is defined by the formula
| Doy, (A)] = 29| A]

for any measurable A C N (of course @ = try(ad(X;)) =Y jdim(V})).

G as a set is a product of A =~ R and N with multiplication given by the formula

(81,7’&1)(827”2) = (81 + 89, D—32/cn1 '712)-

For further reference note that the Lebesque measure is left invariant and the modular

function m is given by the formula m(s,n) = e%*.

(1.2). Theorem. Let Fi(\) = F(t\). If s > %, s1> 32,

dt
[ N8Bl F <

t>1

and

dt
[ 16Filin G <0

t<1

then F(L) is bounded on L.

Remark. From (1.2) and trivial L? estimate one can easily interpolate an LP theorem,

which however does not seem to be sharp.



1.3). Lemma. Let ¢, Q € Ry, ¢ < Q, supp f C [2F=1 2F+1] f € H(s), s > 0, then
+

there exist symmetric functions f;, such that

F=>Y_1 on Ry,
supp fi C [-27F,217H],
for k> 1,

[ 15@P @ +a*)ds < C2 2 04 gy f
0

and for k <1,

/ [fu@)]P (@ + 2®P)de < C27212CF DR 65 f3
0

P. We may assume that & = 0 (otherwise we replace f by dxf). Next, we extend f
symmetricaly to negative halfline. We choose ¢ € C°(R) such that ¢(z) = 1 for |z| < %
and ¢(x) = 0 for |x| > 1. We prescribe the Fourier transform of f;:

]E0=¢JE7

and for [ >0

fi=(8(27"'2) — (27" 2)) f.

By definition we have correct support of fl and

fillze < C27* 1 fl e

We write

fi= W —o1) + f

where 1& = ¢ and ¢Y;(x) = 211/J(2l:c). Since supp f C [~2,2] and
[y (z) < C2'(1 + 2Yz])~ @51

SO

/ |fl|2<1+|w|>2Qs( / |f|)20 [ 2@l - 27202 0 o))

|z|>4 |x|>4
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<O\l

Now (|z| —2) > 1 so
(QZ(IZL" . 2))—23 < 2—2sl.

Moreover
2z —2)) 2?1+ [2])*? < C.

Finally
1< (22! / 92l9=21(|z| — 1)~2 < 0272
|z|>4
Homogeneous estimates

We fix a homogeneous norm on N, that is a function |- | on N such that
|z| >0, z| =0 <= =0 | Doy ()] = 2% |z|.

We put w(s,n) = |n|?. We will consider w both as function on N and as a function on G
(independent on the coordinate from A).
In this section we consider functions on N, so we will simply write L instead of L;.

On N since L is homogeneous p is homogeneous too:
o0
IFVD)IE: = [ IF@)Pa? e
0

(1.4). Theorem. If supp f C[1/2,2], e > 0, then

IF VD)o < CIFVD) 2 apeiarsy < C' Il 2 ey

P. Apply (1.3) and Plancherel on N.

(1.5). Lemma. On N

I ZDk:fk;H%z(w) <C. Z ka||%2(1+|;p\ce+e)

P. Dy, fi are almost orthogonal in L?(w).

Let J = 20, be generator of dilations on R!.
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(1.6). Lemma. Ifs> %, n > %, f(t) — 0 when t — oo, then

d
£y <€ [ Iof @) T

dt

£ e < € [ (720 + 1I7P0) T

P. To prove the first inequality, let ¢ be a C°° function on R such that > ¢(2%¢) = 1 for
t > 0. Put fp(t) = f(2%t)é(t). We have

=Y R(2FL) =) Difi(L)
and
D I fellzr s < 1o f )z
However, one can show that
\|fk(L)H%2(1+|w|Q+a) < Cka”%[(s)

so the first inequality follows from (1.5) .
Put ¢, = f(2FF1) — f(2F).

ok+1 ok+1 ok+1 ok+1

dt dt dt

=] [ 5P < /|Jf|2 /—<1og [ e
2k 2k

SO

d
>l < log2) [ 1152

Let 1) be a C*° function on R such that ¥ (¢t) = 0 for ¢ > 2 and ¢ (¢) = 1 for t < 1. Put
g(t) = =S cx(27%t), h = f — g. To see that series defining g is convergent note that for
given t there is ky such that terms with index k < kg are equal to 0 and terms with index
k > ko are equal to ci. Also > -, ¢, = f(2™T1) — f(2'). Since f(t) goes to 0 when ¢ goes

to oo, the series of ¢ is convergent. This argument also shows that for integral [ we have

g(2") = £(2'). Now
==Y cxD_y(L)
and (by (1.5))

dt
Iy < €S Jerl? < / AEks
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Next, h(2F) = 0 so

2k+1 2k+1 ¢ 2
dt d dt
/|h|2—s/ /uhus)—s a
t t
2k 2k k
ok+1 4
ds dt
<tog@) [ [1mPETT
2k 2k
gk+1
dt
<log2? [ |7
Qk

SO

dt dt
[P <tos2? [ )T

Now, we get the second inequality applying the first inequality to h.

(1.7). Lemma. If N =R?" L =352" 02, then

j=1%j>

o dt
£ e 2 e [ (0P +157) 5
0

P. One easily checks that left side has form
- dt
JEFI2—.
/ | kz_l crJ" f| ;

For n = 1 this gives the claim. Let L, be laplacian on R?". Strightforward calculation

shows that
1 (L)1 22 () < Cullf (Lng) 172 () -

Now we proceed by induction on n: we get the estimate for lower order terms from the
inductive assumption.

AN groups

The distance naturally associated to L (optimal control metric) for our groups is given by

the formula

d(s,n) = arccosh( —
e S

)

provided that |n| is the optimal control distance between n and e associated to L; on N.
Put B, ={z € G :d(x,e) <r}.
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(1.8). Lemma.

Jaswy <

B

For Iwasawa AN groups we know the Plancherel measure of L. — there is a p such that
£ = [ 15O du(y)
where du = h(A)dz, h is bounded by a polynomial and h()\) ~ Az for small A (cf. for
example [11]). What we need is the following estimate
IFVDIE <€ [IFOFO? +A%)ax

Main property of Iwasawa AN group is that A is invariant under a large group — in the
rank 1 case isometries are transitive on spheres. This implies that functions of A are radial,

and that for L we have
F(L)(x) = m'?v(x)

where v is radial.

(1.9). Lemma.

P. ¢» = f(L) has the following form
b(s,n) = ¢ p(d((s,n),€))

where v is function on R;. On most of the annulus r—1 < d((s,n),e) < r we approximatly
have

In| ~ e
(more precisely |n| is a function of r and s, if d((s,n),e) < r then |n| < e¢™= , and if

ls| < r—1,d((s,n),e) =r, then |n| > ce 2 ), so

T

T T
Q(r—s)
¢2%/V2/6Qse 2 %eQT/Z/z
r—1 -7

r—1

r—1<d((s,n),e)<r

and
'S

r r
/ wa% /VZ/GQseQ(T—s) %TQQT / 1/2
r—1 —-r r

r—1<d((s,n),e)<r -1
Let A; be the subalgebra of L*(N) generated by L;.
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(1.10). Lemma. If f(\) = Y cke % ¢, > 0, then f(L) € L'(ds, A1), moreover the
Gelfand transform of f(L) along N is independent of N

P. First consider N = R. Mapping (s,n) +— (s, —n) is an automorphism of G preserving

L, so p; is symmetric in n. Put
hi(s,\?) = /pt(s,n)e“‘"dn.
h¢(s, \) is defined for A > 0. Since p; is holomorphic semigroup on L?

Gtht(s, )\) = 6§ht(s, )\) — 6_28/\ht(8, )\),

/sup \ht(s,\)|ds =1
A

and
lim hi(s,\) = d(s).

t—>0+

We return now to general N. It is easy to see that putting
T(t)(s,n) = h(s, L1)(n)
we get continuous family of contractions on L?(G). Moreover
0T(t) = (02 — e 2 L)T(t) = LT(t),

lim T'(t) =1

tA)O_Q_

hence T'(t) = e~*L. This gives the conclusion for p;, that is for f(\) = e~**, and than we

get the claim by linearity.

(1.11). Lemma. If supp f C [—r,r], then for r > 1, and even Q,

1/2

(VD) < Cr¥/? / (@) + 2972)da
0

and for r <1,

1/2

VD < or @2 | [l + 29
0
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P. If r <1, then
1/2

IF (VL) < Ll VD) e

z|<r
1/2

< orlQ@+1)/2 / F(2) (2 + 29)da
0

If r > 1, then Q is even. Next, let L be the laplacian on Iwasawa type AN with N = R@+2,

We have
1/2

(VD) < / ! 1 VD)l 2

1+w
z|<r

Now by (1.6) , (1.7), (1.10) and (1.9)
VI3 2(1hw) < CillF (VD) 22140
< Cyr|l f(VL)|2

SO
1/2

(VD) < Cr¥? / (@) + 2972 da
0

Proof of (1.2) : We split F. Let ¢ be C2° function such that supp v C [1/2,2] and for
all z > 0 Y ¢(2Fx) = 1. We write F(z) = Y Fx(x), where Fy(x) = m(z)y(27%z). It is
enough to prove that for £ < 0 and s > 3/2 we have
|Fx(VL)|| 11 < C||dx Fill 11 (s)
and that for £k > 0 and s > (Q + 1)/2 we have
1Fx (VL) £r < Cll6gx Fill s
Fix £ < 0. We split f = Fj using (1.3) (with @ replaced by even number greater then
Q+2). By (1.11)
IA(VI) oy < C27F)3 22712352 |60 By |l s
25
= 267|650 Fi |l 11 s
SO
1F VD) <D IANVD) o < C'll8ax Frll s s)-

Case k > 0 is similar.
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