Analysis of Laplacians on solvable Lie groups.

by Waldemar Hebisch ${ }^{1}$

Institute of Mathematics, Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland.
e-mail: hebisch@math.uni.wroc.pl
www: http://www.math.uni.wroc.pl/~hebisch

Notes for Instructional Conference in Edinburgh

General setup

Let G be a connected Lie group, X_{j} right invariant vector fields on G, which generate (as a Lie algebra) the Lie algebra of G,

$$
L=-\sum X_{j}^{2}
$$

If X_{j} linearly span the Lie algebra of G, then L is (up to first order term) the LaplaceBeltrami operator (written in a funny way) for some Riemmanian metric on G. In general L is a hypoelliptic second order operator.
L generates convolution semigroup on all $L^{p}, p \geq 1$ (L^{p} is with respect to left-invariant Haar measure)

$$
e^{-t L} f=p_{t} * f
$$

p_{t} are called heat kernel, $p_{t}>0, p_{t} \in C^{\infty}(G), p_{t+s}=p_{t} * p_{s}$. They solve the heat equation, namely if f is in $L^{2}, u(x, t)=p_{t} * f$, then

$$
\begin{gathered}
-L u=\partial_{t} u \\
\lim _{t \rightarrow 0} u(t, \cdot)=f \quad \text { in } L^{2} .
\end{gathered}
$$

u is the unique solution which satisfies the initial condition and has uniformly (in t) bounded L^{2} norms on $G \times\{t\}$.

1 Partially supported by KBN grant 2 P03A 05814 and European Commision via TMR network "Harmonic analysis"

The closure \mathcal{A} of linear span of p_{t}, for $t>0$ is a (commutative) subalgebra of L^{1} called the subalgebra generated by $L . \mathcal{A}$ is a $*$-Banach algebra.

Example If L is minus Laplacian on \mathbb{R}^{n}, then \mathcal{A} is just set of radial L^{1} functions.
L is positive definite and self-adjoint on $L^{2}(G)$ with respect to left Haar measure. By the spectral theorem

$$
F(L)=\int_{0}^{\infty} F(\lambda) d E(\lambda)
$$

is well defined operator on $L^{2}(G)$.
Spectral decomposition of L and Gelfand transform on \mathcal{A} are closely related. For each $\lambda \in \operatorname{sp}(L)$ there is a smooth positive definite function ϕ_{λ} such that mapping $u \mapsto\left\langle u, \phi_{\lambda}\right\rangle$ is a multiplicative functional on \mathcal{A} and $L \phi_{\lambda}=\lambda \phi_{\lambda}$. If G is non-compact amenable group then $\operatorname{sp}(L)=\mathbb{R}_{+}$.
If $u \in \mathcal{A}$ and the Gelfand transform of u in ϕ_{λ} equals $F(\lambda)$, then $u * f=F(L) f$.
In general $F(L) f=u * f$ where u is a distribution - in the sequel we will identify $F(L)$ with the distribution u.

We have Plancherel formula: there is a measure μ on \mathbb{R}_{+}such that if (the function identified with) $F(L) \in L^{2}$ then

$$
\|F(L)\|_{L^{2}}^{2}=\int|F(\lambda)|^{2} d \mu(\lambda) .
$$

There is also inversion formula

$$
F(L)(x)=\int \phi_{\lambda}(x) F(\lambda) d \mu(\lambda)
$$

μ is locally finite and polynomialy growing.
Remark On \mathbb{R}^{n} Gelfand transform is basicaly the Fourier transform

$$
\widehat{F(L)}(\omega)=F\left(|\omega|^{2}\right)
$$

We begun from the heat eqation, but we may also consider the wave equation on $G \times \mathbb{R}$

$$
L u=-\partial_{t}^{2} u
$$

If $u(0, \cdot)=f$ and $\partial_{t} u(0, \cdot)=h$, then

$$
u(t, \cdot)=\cos (\sqrt{L}) f+\frac{\sin (\sqrt{L})}{\sqrt{L}} h .
$$

Two operators on non-unimodular groups

On non-unimodular groups there is another operator Δ built from X_{j} and closly related to L. For Δ the natural space is L^{2} with respect to right-invariant Haar measure $d_{r} g$. We may define Δ by the formula

$$
\langle\Delta f, f\rangle_{r}=\sum\left\langle X_{j} f, X_{j} f\right\rangle_{r}
$$

where r means that the scalar product is with respect to $d_{r} g . d_{r} g$ is related to the left Haar measure $d g$ via the modular function m :

$$
d_{r} g=m d g
$$

Then we check that

$$
\Delta=-\sum\left(X_{j}+\frac{X_{j} m}{m}\right) X_{j}=L-\sum \frac{X_{j} m}{m} X_{j} .
$$

Mapping $f \mapsto U f=m^{1 / 2} f$ is an isometry of $L^{2}\left(d_{r} g\right)$ with $L^{2}(d g)$. We write

$$
\begin{aligned}
& m^{-1 / 2} L m^{1 / 2}=-\sum\left(m^{-1 / 2} X_{j} m^{1 / 2}\right)^{2}=-\sum\left(X_{j}+\frac{X_{j} m}{2 m}\right)^{2} \\
& =L-\sum \frac{X_{j} m}{m} X_{j}-\frac{1}{4} \sum\left(\frac{X_{j} m}{m}\right)^{2}=\Delta-\frac{1}{4} \sum\left(\frac{X_{j} m}{m}\right)^{2} .
\end{aligned}
$$

Hence, U intertwines the spectral resolutions of L and $\Delta-c$ where $c=\frac{1}{4} \sum\left(\frac{X_{j} m}{m}\right)^{2}$. If $e^{-t \Delta} f=q_{t} * f$, then

$$
p_{t}=m^{1 / 2} e^{-t c} q_{t} .
$$

Finite propagaton speed for wave equation

There is a natural metric d (optimal control metric) on G associated to L. For this metric we have

$$
\text { supp } \cos (t \sqrt{L}) \subset B(r)
$$

We have also finite propagation speed for Δ. This is related to L by the formula

$$
\cos (t \sqrt{L})=m^{1 / 2}(\cos (t \sqrt{\Delta-c})) .
$$

(1.1). Theorem. If F is holomorphic and symmetric, such that

$$
|F(z)| \leq C e^{r \Im z},
$$

$$
\int \mid F\left(\left.\sqrt{(\lambda)}\right|^{2} d \mu<\infty\right.
$$

then $u=F(\sqrt{L}) \in L^{2}(G)$ and supp $u \subset B(r)$. Conversly, if G admits nontrivial homomorphizm into $\mathbb{R}, u \in \overline{L^{2} \cap \mathcal{A}}$, supp $u \subset B(r)$, then $u=F(\sqrt{L})$ with F as above.
P. By euclidean Paley-Winer theorem supp $\hat{F} \subset[-r, r]$. Now

$$
F(\sqrt{L})=\int \hat{F}(t) \cos (t \sqrt{L}) d t
$$

so the first claim follows from finite propagation speed. For the converse note, that $u=$ $F(\sqrt{L})$ with some $F \in L^{2}(\mu)$. Now, we take image under homomorphizm and again apply euclidean Paley-Winer.

Questions

The basic question is:
Q: How does $F(L)$ behave on $L^{p}, p \neq 2$.
Remark. We are interested in real-variable F so L must have real spectrum. The spectrum of Δ on L^{p} is complex for non-unimodular G and $p \neq 2$.
Below is an atempt to present state of art, giving more specific questions, and shortly summarizing known answers.
Q1: Is \mathcal{A} symmetric (if $x=x^{*}$, then $\operatorname{sp}(x)$ is real).
yes if $L^{1}(G)$ is symmetric (for exponential G, D. Poguntke [24] gave characterization), M.
Christ and D. Müller [7] show G and L with non-symmetric \mathcal{A}, J. Ludwig and D. Müller [19] give a large class of counter-examples
Q2: Is it true that:

$$
\exists_{k} F \in C_{c}^{k}\left(\mathbb{R}_{+}\right) \Rightarrow F(L) \in L^{1}(G)
$$

yes if $\operatorname{dim}(G /[G, G])=1$, real parts of roots are positive
yes if G is Iwasawa type, L distinguished $[\mathrm{H}]$, [CGHM] (as pointed out by D. Poguntke, $L^{1}(G)$ is usually non-symmetric)
yes if $G=\mathbb{R}^{k} \ltimes \mathbb{R}^{m}$, adjoint action is semisimple, $L=L_{0}+L_{1}$, L_{0} lives on \mathbb{R}^{k}, L_{1} lives on \mathbb{R}^{m} and is a sum of eigenvectors for adjoint action (unpublished).
no on Heisenberg group extended by hyperbolic dilations [7].
Q3: Is it true that:

$$
\exists_{a, b, C, k} \operatorname{supp} F \subset[a, b] \Rightarrow \sup \|F(t L)\|_{L^{1}} \leq C\|F\|_{C^{k}}
$$

yes if G is Iwasawa type, L distinguished (implicit in [11])
yes for groups considerd in this paper
Q4:Is it true that:

$$
\exists_{p \neq 2, C, k, \phi} \phi \in C_{c}^{\infty}\left(\mathbb{R}_{+}\right),\|F(L)\|_{L^{p} \rightarrow L^{p}} \leq C \sup \|\phi F(t \cdot)\|_{C^{k}}
$$

completely open - there is no Calderon-Zygmund theory on exponential growth groups, newertheless, we expect some positive results.
Q5: Find smallest k if the answer for one of the previous questions is positive the critical index at infinity which we get in this paper is the best possible.

Assume that $G=A \ltimes N, L=X_{1}^{2}+L_{1}, X_{1}$ generates A, L_{1} lives on N and $\left[X_{1}, L_{1}\right]=2 L_{1}$. We consider N as a homogeneous group with dilations $D_{t}(x)=\exp \left(\operatorname{ct} X_{1}\right) x \exp \left(-c t X_{1}\right)$, $c=\log (2) / 2$. Note, that

$$
D_{k} L=2^{k} L
$$

N may be considerd as a stratified nilpotent Lie group, namely, its Lie algebra (which may be identified with N via exponential map) is a stratified nilpotent Lie algebra. That means there is q (we say that N is of step q) such that

$$
N=\bigoplus_{j=1}^{q} V_{j}
$$

V_{1} generates N and $\left[V_{j}, V_{i}\right] \subset V_{i+j}$ for every $1 \leq j, i \leq q$. Usually, one assumes that D_{k} is a diagonal operator, and V_{j} are eigenspaces, but our assumption is equivalent to saying that $D_{1}=\sqrt{2} U$, where U is isometry with respect to the scalar product on V_{1} associated to L.
The homogeneous dimension Q of N is defined by the formula

$$
\left|D_{2 k}(A)\right|=2^{k Q}|A|
$$

for any measurable $A \subset N$ (of course $\left.Q=\operatorname{tr}_{N}\left(\operatorname{ad}\left(X_{1}\right)\right)=\sum j \operatorname{dim}\left(V_{j}\right)\right)$.
G as a set is a product of $A \approx \mathbb{R}$ and N with multiplication given by the formula

$$
\left(s_{1}, n_{1}\right)\left(s_{2}, n_{2}\right)=\left(s_{1}+s_{2}, D_{-s_{2} / c} n_{1} \cdot n_{2}\right) .
$$

For further reference note that the Lebesque measure is left invariant and the modular function m is given by the formula $m(s, n)=e^{Q s}$.
(1.2). Theorem. Let $F_{t}(\lambda)=F(t \lambda)$. If $s_{0}>\frac{Q+1}{2}, s_{1}>\frac{3}{2}$,

$$
\int_{t>1}\left\|\phi F_{t}\right\|_{H\left(s_{1}\right)} \frac{d t}{t}<\infty
$$

and

$$
\int_{t \leq 1}\left\|\phi F_{t}\right\|_{H\left(s_{0}\right)} \frac{d t}{t}<\infty
$$

then $F(L)$ is bounded on L^{1}.
Remark. From (1.2) and trivial L^{2} estimate one can easily interpolate an L^{p} theorem, which however does not seem to be sharp.
(1.3). Lemma. Let $q, Q \in \mathbb{R}_{+}, q \leq Q$, supp $f \subset\left[2^{k-1}, 2^{k+1}\right], f \in H(s), s \geq 0$, then there exist symmetric functions f_{l}, such that

$$
\begin{aligned}
& f=\sum f_{l} \quad \text { on } \mathbb{R}_{+}, \\
& \text {supp } \hat{f}_{l} \subset\left[-2^{l-k}, 2^{l-k}\right],
\end{aligned}
$$

for $k \geq 1$,

$$
\int_{0}^{\infty}\left|f_{l}(x)\right|^{2}\left(x^{2 q}+x^{2 Q}\right) d x \leq C 2^{-2 s l} 2^{(2 q+1) k}\left\|\delta_{2^{k}} f\right\|_{H(s)}^{2}
$$

and for $k \leq 1$,

$$
\int_{0}^{\infty}\left|f_{l}(x)\right|^{2}\left(x^{2 q}+x^{2 Q}\right) d x \leq C 2^{-2 s l} 2^{(2 Q+1) k}\left\|\delta_{2^{k}} f\right\|_{H(s)}^{2}
$$

P. We may assume that $k=0$ (otherwise we replace f by $\delta_{k} f$). Next, we extend f symmetricaly to negative halfline. We choose $\phi \in C_{c}^{\infty}(\mathbb{R})$ such that $\phi(x)=1$ for $|x|<\frac{1}{2}$ and $\phi(x)=0$ for $|x| \geq 1$. We prescribe the Fourier transform of f_{l} :

$$
\hat{f}_{0}=\phi \hat{f}
$$

and for $l>0$

$$
\hat{f}_{l}=\left(\phi\left(2^{-l} x\right)-\phi\left(2^{-l+1} x\right)\right) \hat{f}
$$

By definition we have correct support of \hat{f}_{l} and

$$
\left\|f_{l}\right\|_{L^{2}} \leq C 2^{-s l}\|f\|_{H(s)}
$$

We write

$$
f_{l}=\left(\psi_{l}-\psi_{l-1}\right) * f
$$

where $\hat{\psi}=\phi$ and $\psi_{l}(x)=2^{l} \psi\left(2^{l} x\right)$. Since supp $f \subset[-2,2]$ and

$$
\mid \psi_{l}(x) \leq C 2^{l}\left(1+2^{l}|x|\right)^{-Q-s-1}
$$

so

$$
\int_{|x|>4}\left|f_{l}\right|^{2}(1+|x|)^{2 Q} \leq\left(\int|f|\right)^{2} C \int_{|x|>4} 2^{2 l}\left(2^{l}(|x|-2)^{-2 Q-2 s-2}(1+|x|)^{2 Q}\right.
$$

$$
\leq C\|f\|_{H(s)}^{2} I
$$

Now $(|x|-2) \geq 1$ so

$$
\left(2^{l}(|x|-2)\right)^{-2 s} \leq 2^{-2 s l} .
$$

Moreover

$$
\left(2^{l}(|x|-2)\right)^{-2 Q}(1+|x|)^{2 Q} \leq C .
$$

Finally

$$
I \leq C 2^{-2 s l} \int_{|x|>4} 2^{2 l} 2^{-2 l}(|x|-1)^{-2} \leq C 2^{-2 s l}
$$

Homogeneous estimates

We fix a homogeneous norm on N, that is a function $|\cdot|$ on N such that

$$
|x| \geq 0, \quad|x|=0 \Longleftrightarrow x=0 \quad\left|D_{2 k}(x)\right|=2^{k}|x|
$$

We put $w(s, n)=|n|^{Q}$. We will consider w both as function on N and as a function on G (independent on the coordinate from A).
In this section we consider functions on N, so we will simply write L instead of L_{1}.
On N since L is homogeneous μ is homogeneous too:

$$
\|F(\sqrt{L})\|_{L^{2}}^{2}=c \int_{0}^{\infty}|F(x)|^{2} x^{Q-1} d x
$$

(1.4). Theorem. If supp $f \subset[1 / 2,2], \varepsilon>0$, then

$$
\|f(\sqrt{L})\|_{L^{1}} \leq C\|f(\sqrt{L})\|_{L^{2}\left(1+|x|^{Q+\varepsilon}\right)} \leq C^{\prime}\|f\|_{H\left(\frac{Q}{2}+\varepsilon\right)}
$$

P. Apply (1.3) and Plancherel on N.
(1.5). Lemma. On N

$$
\left\|\sum D_{k} f_{k}\right\|_{L^{2}(w)}^{2} \leq C_{\varepsilon} \sum\left\|f_{k}\right\|_{L^{2}\left(1+|x|^{Q+\varepsilon}\right)}^{2}
$$

P. $D_{k} f_{k}$ are almost orthogonal in $L^{2}(w)$.

Let $J=x \partial_{x}$ be generator of dilations on \mathbb{R}^{1}.
(1.6). Lemma. If $s>\frac{Q}{2}, n>\frac{Q}{2}, f(t) \rightarrow 0$ when $t \rightarrow \infty$, then

$$
\begin{gathered}
\|f(L)\|_{L^{2}(w)}^{2} \leq C \int\|\phi f(t \cdot)\|_{H(s)}^{2} \frac{d t}{t} \\
\|f(L)\|_{L^{2}(w)}^{2} \leq C \int\left(\left|J^{n} f\right|^{2}(t)+|J f|^{2}(t)\right) \frac{d t}{t}
\end{gathered}
$$

P. To prove the first inequality, let ϕ be a C^{∞} function on \mathbb{R}_{+}such that $\sum \phi\left(2^{k} t\right)=1$ for $t>0$. Put $f_{k}(t)=f\left(2^{k} t\right) \phi(t)$. We have

$$
f(L)=\sum f_{k}\left(2^{k} L\right)=\sum D_{k} f_{k}(L)
$$

and

$$
\sum\left\|f_{k}\right\|_{H(s)}^{2} \leq C \int\|\phi f(t \cdot)\|_{H(s)}^{2} \frac{d t}{t}
$$

However, one can show that

$$
\left\|f_{k}(L)\right\|_{L^{2}\left(1+|x|^{Q+\varepsilon}\right)}^{2} \leq C\left\|f_{k}\right\|_{H(s)}^{2}
$$

so the first inequality follows from (1.5).
Put $c_{k}=f\left(2^{k+1}\right)-f\left(2^{k}\right)$.

$$
\left|c_{k}\right|^{2}=\left|\int_{2^{k}}^{2^{k+1}} J f \frac{d t}{t}\right|^{2} \leq \int_{2^{k}}^{2^{k+1}}|J f|^{2} \frac{d t}{t} \int_{2^{k}}^{2^{k+1}} \frac{d t}{t} \leq \log (2) \int_{2^{k}}^{2^{k+1}}|J f|^{2} \frac{d t}{t}
$$

so

$$
\sum\left|c_{k}\right|^{2} \leq \log (2) \int|J f|^{2} \frac{d t}{t}
$$

Let ψ be a C^{∞} function on \mathbb{R}_{+}such that $\psi(t)=0$ for $t \geq 2$ and $\psi(t)=1$ for $t \leq 1$. Put $g(t)=-\sum c_{k} \psi\left(2^{-k} t\right), h=f-g$. To see that series defining g is convergent note that for given t there is k_{0} such that terms with index $k<k_{0}$ are equal to 0 and terms with index $k>k_{0}$ are equal to c_{k}. Also $\sum_{k=l}^{m} c_{k}=f\left(2^{m+1}\right)-f\left(2^{l}\right)$. Since $f(t)$ goes to 0 when t goes to ∞, the series of c_{k} is convergent. This argument also shows that for integral l we have $g\left(2^{l}\right)=f\left(2^{l}\right)$. Now

$$
g(L)=-\sum c_{k} D_{-k} \psi(L)
$$

and (by (1.5))

$$
\|g(L)\|_{L^{2}(w)}^{2} \leq C \sum\left|c_{k}\right|^{2} \leq C^{\prime} \int|J f|^{2} \frac{d t}{t}
$$

Next, $h\left(2^{k}\right)=0$ so

$$
\begin{gathered}
\int_{2^{k}}^{2^{k+1}}|h|^{2} \frac{d t}{t} \leq \int_{2^{k}}^{2^{k+1}}\left(\int_{2^{k}}^{t}|J h|(s) \frac{d s}{s}\right)^{2} \frac{d t}{t} \\
\quad \leq \log (2) \int_{2^{k}}^{2^{k+1}} \int_{2^{k}}^{t}|J h|^{2}(s) \frac{d s}{s} \frac{d t}{t} \\
\quad \leq \log (2)^{2} \int_{2^{k}}^{2^{k+1}}|J h|^{2}(t) \frac{d t}{t}
\end{gathered}
$$

so

$$
\int|h|^{2} \frac{d t}{t} \leq \log (2)^{2} \int|J h|^{2}(t) \frac{d t}{t}
$$

Now, we get the second inequality applying the first inequality to h.
(1.7). Lemma. If $N=\mathbb{R}^{2 n}, L=\sum_{j=1}^{2 n} \partial_{j}^{2}$, then

$$
\|f(L)\|_{L^{2}(w)}^{2} \geq c \int_{0}^{\infty}\left(\left|J^{n} f\right|^{2}+|J f|^{2}\right) \frac{d t}{t}
$$

P. One easily checks that left side has form

$$
\int\left|\sum_{k=1}^{n} c_{k} J^{k} f\right|^{2} \frac{d t}{t}
$$

For $n=1$ this gives the claim. Let L_{n} be laplacian on $\mathbb{R}^{2 n}$. Strightforward calculation shows that

$$
\left\|f\left(L_{n}\right)\right\|_{L^{2}(w)}^{2} \leq C_{n}\left\|f\left(L_{n+1}\right)\right\|_{L^{2}(w)}^{2} .
$$

Now we proceed by induction on n : we get the estimate for lower order terms from the inductive assumption.

AN groups

The distance naturally associated to L (optimal control metric) for our groups is given by the formula

$$
d(s, n)=\operatorname{arccosh}\left(\frac{e^{-2 s}+1+|n|^{2}}{e^{-s}}\right)
$$

provided that $|n|$ is the optimal control distance between n and e associated to L_{1} on N. Put $B_{r}=\{x \in G: d(x, e)<r\}$.
(1.8). Lemma.

$$
\int_{B_{r}}(1+w)^{-1} \leq r^{2}
$$

For Inasawa $A N$ groups we know the Plancherel measure of L - there is a μ such that

$$
\|f(L)\|^{2}=\int|f(\lambda)|^{2} d \mu(\lambda)
$$

where $d \mu=h(\lambda) d x, h$ is bounded by a polynomial and $h(\lambda) \approx \lambda^{\frac{1}{2}}$ for small λ (cf. for example [11]). What we need is the following estimate

$$
\|f(\sqrt{L})\|^{2} \leq C \int|f(\lambda)|^{2}\left(\lambda^{2}+\lambda^{Q}\right) d \lambda
$$

Main property of Iwasawa $A N$ group is that Δ is invariant under a large group - in the rank 1 case isometries are transitive on spheres. This implies that functions of Δ are radial, and that for L we have

$$
F(L)(x)=m^{1 / 2} \nu(x)
$$

where ν is radial.
(1.9). Lemma.

$$
\int_{B_{r}}|f(L)|^{2} w \leq C r \int_{B_{r}}|f(L)|^{2}
$$

P. $\psi=f(L)$ has the following form

$$
\psi(s, n)=e^{\frac{-Q s}{2}} \nu(d((s, n), e))
$$

where ν is function on \mathbb{R}_{+}. On most of the annulus $r-1<d((s, n), e)<r$ we approximatly have

$$
|n| \approx e^{\frac{r-s}{2}}
$$

(more precisely $|n|$ is a function of r and s, if $d((s, n), e)<r$ then $|n|<e^{\frac{r-s}{2}}$, and if $|s|<r-1, d((s, n), e)=r$, then $\left.|n|>c e^{\frac{r-s}{2}}\right)$, so

$$
\int_{r-1<d((s, n), e)<r} \psi^{2} \approx \int_{r-1}^{r} \nu^{2} \int_{-r}^{r} e^{Q s} e^{\frac{Q(r-s)}{2}} \approx e^{Q r} \int_{r-1}^{r} \nu^{2}
$$

and

$$
\int_{r-1<d((s, n), e)<r} \psi^{2} w \approx \int_{r-1}^{r} \nu^{2} \int_{-r}^{r} e^{Q s} e^{Q(r-s)} \approx r e^{Q r} \int_{r-1}^{r} \nu^{2}
$$

Let \mathcal{A}_{1} be the subalgebra of $L^{1}(N)$ generated by L_{1}.
(1.10). Lemma. If $f(\lambda)=\sum c_{k} e^{-t_{k} \lambda}, t_{k}>0$, then $f(L) \in L^{1}\left(d s, \mathcal{A}_{1}\right)$, moreover the Gelfand transform of $f(L)$ along N is independent of N
P. First consider $N=\mathbb{R}$. Mapping $(s, n) \mapsto(s,-n)$ is an automorphism of G preserving L, so p_{t} is symmetric in n. Put

$$
h_{t}\left(s, \lambda^{2}\right)=\int p_{t}(s, n) e^{i \lambda n} d n .
$$

$h_{t}(s, \lambda)$ is defined for $\lambda \geq 0$. Since p_{t} is holomorphic semigroup on L^{1}

$$
\begin{gathered}
\partial_{t} h_{t}(s, \lambda)=\partial_{s}^{2} h_{t}(s, \lambda)-e^{-2 s} \lambda h_{t}(s, \lambda), \\
\int \sup _{\lambda}\left|h_{t}(s, \lambda)\right| d s=1
\end{gathered}
$$

and

$$
\lim _{t \rightarrow 0_{+}} h_{t}(s, \lambda)=\delta(s)
$$

We return now to general N. It is easy to see that putting

$$
T(t)(s, n)=h\left(s, L_{1}\right)(n)
$$

we get continuous family of contractions on $L^{2}(G)$. Moreover

$$
\begin{gathered}
\partial_{t} T(t)=\left(\partial_{s}^{2}-e^{-2 s} L_{1}\right) T(t)=L T(t), \\
\lim _{t \rightarrow 0_{+}} T(t)=I
\end{gathered}
$$

hence $T(t)=e^{-t L}$. This gives the conclusion for p_{t}, that is for $f(\lambda)=e^{-t \lambda}$, and than we get the claim by linearity.
(1.11). Lemma. If supp $\hat{f} \subset[-r, r]$, then for $r>1$, and even Q,

$$
\|f(\sqrt{L})\|_{L^{1}} \leq C r^{3 / 2}\left(\int_{0}^{\infty}|f(x)|^{2}\left(x^{2}+x^{Q+2}\right) d x\right)^{1 / 2}
$$

and for $r \leq 1$,

$$
\|f(\sqrt{L})\|_{L^{1}} \leq C r^{(Q+1) / 2}\left(\int_{0}^{\infty}|f(x)|^{2}\left(x^{2}+x^{Q}\right) d x\right)^{1 / 2}
$$

P. If $r \leq 1$, then

$$
\begin{aligned}
& \|f(\sqrt{L})\|_{L^{1}} \leq\left(\int_{x \mid<r} 1\right)^{1 / 2}\|f(\sqrt{L})\|_{L^{2}} \\
\leq & C r^{(Q+1) / 2}\left(\int_{0}^{\infty}|f(x)|^{2}\left(x^{2}+x^{Q}\right) d x\right)^{1 / 2} .
\end{aligned}
$$

If $r>1$, then Q is even. Next, let \tilde{L} be the laplacian on Iwasawa type $A N$ with $N=\mathbb{R}^{Q+2}$. We have

$$
\|f(\sqrt{L})\|_{L^{1}} \leq\left(\int_{|x|<r} \frac{1}{1+w}\right)^{1 / 2}\|f(\sqrt{L})\|_{L^{2}(1+w)}
$$

Now by (1.6), (1.7) , (1.10) and (1.9)

$$
\begin{gathered}
\|f(\sqrt{L})\|_{L^{2}(1+w)}^{2} \leq C_{1}\|f(\sqrt{\tilde{L}})\|_{L^{2}(1+w)}^{2} \\
\leq C_{2} r\|f(\sqrt{\tilde{L}})\|_{L^{2}}^{2}
\end{gathered}
$$

so

$$
\|f(\sqrt{L})\|_{L^{1}} \leq C r^{3 / 2}\left(\int_{0}^{\infty}|f(x)|^{2}\left(x^{2}+x^{Q+2}\right) d x\right)^{1 / 2}
$$

Proof of (1.2) : We split F. Let ψ be C_{c}^{∞} function such that supp $\psi \subset[1 / 2,2]$ and for all $x>0 \sum \psi\left(2^{k} x\right)=1$. We write $F(x)=\sum F_{k}(x)$, where $F_{k}(x)=m(x) \psi\left(2^{-k} x\right)$. It is enough to prove that for $k \leq 0$ and $s>3 / 2$ we have

$$
\left\|F_{k}(\sqrt{L})\right\|_{L^{1}} \leq C\left\|\delta_{2^{k}} F_{k}\right\|_{H(s)}
$$

and that for $k \geq 0$ and $s>(Q+1) / 2$ we have

$$
\left\|F_{k}(\sqrt{L})\right\|_{L^{1}} \leq C\left\|\delta_{2^{k}} F_{k}\right\|_{H(s)}
$$

Fix $k \leq 0$. We split $f=F_{k}$ using (1.3) (with Q replaced by even number greater then $Q+2$). By (1.11)

$$
\begin{aligned}
\left\|f_{l}(\sqrt{L})\right\|_{L^{1}} & \leq C\left(2^{l-k}\right)^{3 / 2} 2^{-s l} 2^{3 k / 2}\left\|\delta_{2^{k}} F_{k}\right\|_{H(s)} \\
& =C 2^{\left(\frac{3}{2}-s\right) l}\left\|\delta_{2^{k}} F_{k}\right\|_{H(s)}
\end{aligned}
$$

so

$$
\|f(\sqrt{L})\|_{L^{1}} \leq \sum\left\|f_{l}(\sqrt{L})\right\|_{L^{1}} \leq C^{\prime}\left\|\delta_{2^{k}} F_{k}\right\|_{H(s)}
$$

Case $k \geq 0$ is similar.

References

[1] G. Alexpoulos, Spectral multipliers on Lie groups of polynomial growth, Proc. AMS 120 (1994), 973-979.
[2] J. Ph. Anker, L^{p} Fourier multipliers on Riemannian symmetric spaces of the non-compact type, Ann. of Math. 132 (1990), 597-628.
[3] J. Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), 257-297.
[4] F. Astengo, Multipliers for a distinguished Laplacean on solvable extensions of H-type groups, Monatsh. Math. 120 (1995), 179-188.
[5] Ph. Bougerol, Examples de théorm̀es locaux sur certains groupes résolubles, Ann. I. H. P. 19 (1983), 369-391.
[6] M. Christ, L^{p} bound for spectral multiplier on nilpotent groups, TAMS 328 (1991), 73-81.
[7] M. Christ, D. Müller, On L^{p} spectral multipliers for a solvable Lie group Geom. Funct. Anal. 6 (1996), 860-876.
[8] M. Christ, Ch. Sogge, The weak type L^{1} convergence of eigenfunction expansions for pseudodifferential operators, Invent. Math. 94 (1988), 421-453.
[9] J. L. Clerc, E. M. Stein, L^{p}-multipliers for non-compact symmetric spaces, Proc. Nat. Acad. Sci. USA (1974), 3911-3912.
[10] M. Cowling, Harmonic analysis on semigroups, Ann. of Math. 117 (1983), 267-283.
[11] M. Cowling, S. Giulini, A. Hulanicki, G. Mauceri, Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth, Studia Math. 111 (1994), 103-121.
[12] W. Hebisch, The subalgebra of $L^{1}(A N)$ generated by the laplacean, Proc. AMS 117 (1993), 547-549.
[13] W. Hebisch, Multiplier theorem on generalized Heisenberg groups, Coll. Math. 65 (1993) 231-239.
[14] W. Hebisch, J. Zienkiewicz, Multiplier theorem on generalized Heisenberg groups II, Coll. Math. 69 (1995) 29-36.
[15] W. Hebisch, Boundedness of L^{1} spectral multipliers for an exponential solvable Lie group, Coll. Math. 73 (1997), 155-164.
[16] W. Hebisch, Spectral multipliers on exponential growth solvable Lie groups, Math. Z. 229 (1998), 435-441.
[17] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960), 93-140.
[18] A. Hulanicki, Subalgebra of $L_{1}(G)$ associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287.
[19] J. Ludwig, D. Müller, Sub-Laplacians of holomorphic L^{p}-type on rank one $A N$-groups and related solvable groups, preprint.
[20] G. Mauceri, S. Meda, Vector-Valued Multipliers on Stratified Groups, Revista Math. Iberoamericana (6), 141-154.
[21] D. Müller, E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. de Math. Pure et Appl. 73 (1994), 413-440.
[22] S. Mustapha, Multiplicateurs spectraux sur certains groupes non-unimodulaires, Harmonic Analysis and Number Theory, CMS Conf. Proceedings, Vol 21, 1997.
[23] S. Mustapha, Multiplicateurs de Mikhlin pour une classe particulière de groupes non-unimodulaires, Ann. Inst. Fourier 48 (1998), 957-966.
[24] D. Poguntke, Algebraically irreducible representations of L^{1}-algebras of exponential Lie groups, Duke Math. J. 50 (1983), 1077-1106.
[25] A. Sikora, Multiplicateurs associés aux souslaplaciens sur les groupes homogènes, C.R. Acad. Sci. Paris, Série I, 315 (1992), 417-419.
[26] A. Sikora, Sharp pointwise estimates on heat kernels, Quart. J. Math. 47(1996), 731-382.
[27] E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. of Math. Stud. 63, Princeton Univ. Press, Princeton 1970.
[28] M. Taylor, L^{p}-Estimate on functions of the Laplace operator, Duke Math. J. 58 (1989), 773-793.

