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General setup

Let G be a connected Lie group, Xj right invariant vector fields on G, which generate (as

a Lie algebra) the Lie algebra of G,

L = −
∑

X2
j .

If Xj linearly span the Lie algebra of G, then L is (up to first order term) the Laplace-

Beltrami operator (written in a funny way) for some Riemmanian metric on G. In general

L is a hypoelliptic second order operator.

L generates convolution semigroup on all Lp, p ≥ 1 (Lp is with respect to left-invariant

Haar measure)

e−tLf = pt ∗ f

pt are called heat kernel, pt > 0, pt ∈ C∞(G), pt+s = pt ∗ps. They solve the heat equation,

namely if f is in L2, u(x, t) = pt ∗ f , then

−Lu = ∂tu

lim
t→0

u(t, ·) = f in L2.

u is the unique solution which satisfies the initial condition and has uniformly (in t)

bounded L2 norms on G× {t}.

1 Partially supported by KBN grant 2 P03A 058 14 and European Commision
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The closure A of linear span of pt, for t > 0 is a (commutative) subalgebra of L1 called

the subalgebra generated by L. A is a ∗-Banach algebra.

Example If L is minus Laplacian on Rn, then A is just set of radial L1 functions.

L is positive definite and self-adjoint on L2(G) with respect to left Haar measure. By the

spectral theorem

F (L) =

∞∫
0

F (λ)dE(λ)

is well defined operator on L2(G).

Spectral decomposition of L and Gelfand transform on A are closely related. For each

λ ∈ sp(L) there is a smooth positive definite function φλ such that mapping u 7→ 〈u, φλ〉
is a multiplicative functional on A and Lφλ = λφλ. If G is non-compact amenable group

then sp(L) = R+.

If u ∈ A and the Gelfand transform of u in φλ equals F (λ), then u ∗ f = F (L)f .

In general F (L)f = u ∗ f where u is a distribution — in the sequel we will identify F (L)

with the distribution u.

We have Plancherel formula: there is a measure µ on R+ such that if (the function identified

with) F (L) ∈ L2 then

‖F (L)‖2L2 =

∫
|F (λ)|2dµ(λ).

There is also inversion formula

F (L)(x) =

∫
φλ(x)F (λ)dµ(λ).

µ is locally finite and polynomialy growing.

Remark On Rn Gelfand transform is basicaly the Fourier transform

F̂ (L)(ω) = F (|ω|2).

We begun from the heat eqation, but we may also consider the wave equation on G× R

Lu = −∂2
t u.

If u(0, ·) = f and ∂tu(0, ·) = h, then

u(t, ·) = cos(
√
L)f +

sin(
√
L)√
L

h.
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Two operators on non-unimodular groups

On non-unimodular groups there is another operator ∆ built from Xj and closly related

to L. For ∆ the natural space is L2 with respect to right-invariant Haar measure drg. We

may define ∆ by the formula

〈∆f, f〉r =
∑
〈Xjf,Xjf〉r

where r means that the scalar product is with respect to drg. drg is related to the left

Haar measure dg via the modular function m:

drg = mdg

Then we check that

∆ = −
∑

(Xj +
Xjm

m
)Xj = L−

∑ Xjm

m
Xj .

Mapping f 7→ Uf = m1/2f is an isometry of L2(drg) with L2(dg). We write

m−1/2Lm1/2 = −
∑

(m−1/2Xjm
1/2)2 = −

∑
(Xj +

Xjm

2m
)2

= L−
∑ Xjm

m
Xj −

1

4

∑(
Xjm

m

)2

= ∆− 1

4

∑(
Xjm

m

)2

.

Hence, U intertwines the spectral resolutions of L and ∆ − c where c = 1
4

∑(
Xjm
m

)2

. If

e−t∆f = qt ∗ f , then

pt = m1/2e−tcqt.

Finite propagaton speed for wave equation

There is a natural metric d (optimal control metric) on G associated to L. For this metric

we have

supp cos(t
√
L) ⊂ B(r).

We have also finite propagation speed for ∆. This is related to L by the formula

cos(t
√
L) = m1/2(cos(t

√
∆− c)).

(1.1). Theorem. If F is holomorphic and symmetric, such that

|F (z)| ≤ Cer=z,
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∫
|F (
√

(λ)|2dµ <∞,

then u = F (
√
L) ∈ L2(G) and supp u ⊂ B(r). Conversly, if G admits nontrivial homo-

morphizm into R, u ∈ L2 ∩ A, supp u ⊂ B(r), then u = F (
√
L) with F as above.

P. By euclidean Paley-Winer theorem supp F̂ ⊂ [−r, r]. Now

F (
√
L) =

∫
F̂ (t) cos(t

√
L)dt

so the first claim follows from finite propagation speed. For the converse note, that u =

F (
√
L) with some F ∈ L2(µ). Now, we take image under homomorphizm and again apply

euclidean Paley-Winer.
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Questions

The basic question is:

Q: How does F (L) behave on Lp, p 6= 2.

Remark. We are interested in real-variable F so Lmust have real spectrum. The spectrum

of ∆ on Lp is complex for non-unimodular G and p 6= 2.

Below is an atempt to present state of art, giving more specific questions, and shortly

summarizing known answers.

Q1: Is A symmetric (if x = x∗, then sp(x) is real).

yes if L1(G) is symmetric (for exponential G, D. Poguntke [24] gave characterization), M.

Christ and D. Müller [7] show G and L with non-symmetric A, J. Ludwig and D. Müller

[19] give a large class of counter-examples

Q2: Is it true that:

∃kF ∈ Ckc (R+)⇒ F (L) ∈ L1(G)

yes if dim(G/[G,G]) = 1, real parts of roots are positive

yes if G is Iwasawa type, L distinguished [H], [CGHM] (as pointed out by D. Poguntke,

L1(G) is usually non-symmetric)

yes if G = Rk nRm, adjoint action is semisimple, L = L0 +L1, L0 lives on Rk, L1 lives on

Rm and is a sum of eigenvectors for adjoint action (unpublished).

no on Heisenberg group extended by hyperbolic dilations [7].

Q3: Is it true that:

∃a,b,C,k supp F ⊂ [a, b]⇒ sup ‖F (tL)‖L1 ≤ C‖F‖Ck

yes if G is Iwasawa type, L distinguished (implicit in [11])

yes for groups considerd in this paper

Q4:Is it true that:

∃p 6=2,C,k,φφ ∈ C∞c (R+), ‖F (L)‖Lp→Lp ≤ C sup ‖φF (t·)‖Ck

completely open — there is no Calderon-Zygmund theory on exponential growth groups,

newertheless, we expect some positive results.

Q5: Find smallest k if the answer for one of the previous questions is positive

the critical index at infinity which we get in this paper is the best possible.
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Assume that G = AnN , L = X2
1 +L1, X1 generates A, L1 lives on N and [X1, L1] = 2L1.

We consider N as a homogeneous group with dilations Dt(x) = exp(ctX1)x exp(−ctX1),

c = log(2)/2. Note, that

DkL = 2kL.

N may be considerd as a stratified nilpotent Lie group, namely, its Lie algebra (which

may be identified with N via exponential map) is a stratified nilpotent Lie algebra. That

means there is q (we say that N is of step q) such that

N =

q⊕
j=1

Vj ,

V1 generates N and [Vj , Vi] ⊂ Vi+j for every 1 ≤ j, i ≤ q. Usually, one assumes that Dk

is a diagonal operator, and Vj are eigenspaces, but our assumption is equivalent to saying

that D1 =
√

2U , where U is isometry with respect to the scalar product on V1 associated

to L.

The homogeneous dimension Q of N is defined by the formula

|D2k(A)| = 2kQ|A|

for any measurable A ⊂ N (of course Q = trN (ad(X1)) =
∑
j dim(Vj)).

G as a set is a product of A ≈ R and N with multiplication given by the formula

(s1, n1)(s2, n2) = (s1 + s2, D−s2/cn1 · n2).

For further reference note that the Lebesque measure is left invariant and the modular

function m is given by the formula m(s, n) = eQs.

(1.2). Theorem. Let Ft(λ) = F (tλ). If s0 >
Q+1

2 , s1 >
3
2 ,∫

t>1

‖φFt‖H(s1)
dt

t
<∞

and ∫
t≤1

‖φFt‖H(s0)
dt

t
<∞

then F (L) is bounded on L1.

Remark. From (1.2) and trivial L2 estimate one can easily interpolate an Lp theorem,

which however does not seem to be sharp.
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(1.3). Lemma. Let q,Q ∈ R+, q ≤ Q, supp f ⊂ [2k−1, 2k+1], f ∈ H(s), s ≥ 0, then

there exist symmetric functions fl, such that

f =
∑

fl on R+,

supp f̂l ⊂ [−2l−k, 2l−k],

for k ≥ 1,
∞∫

0

|fl(x)|2(x2q + x2Q)dx ≤ C2−2sl2(2q+1)k‖δ2kf‖2H(s)

and for k ≤ 1,

∞∫
0

|fl(x)|2(x2q + x2Q)dx ≤ C2−2sl2(2Q+1)k‖δ2kf‖2H(s)

P. We may assume that k = 0 (otherwise we replace f by δkf). Next, we extend f

symmetricaly to negative halfline. We choose φ ∈ C∞c (R) such that φ(x) = 1 for |x| < 1
2

and φ(x) = 0 for |x| ≥ 1. We prescribe the Fourier transform of fl:

f̂0 = φf̂ ,

and for l > 0

f̂l =
(
φ(2−lx)− φ(2−l+1x)

)
f̂ .

By definition we have correct support of f̂l and

‖fl‖L2 ≤ C2−sl‖f‖H(s).

We write

fl = (ψl − ψl−1) ∗ f

where ψ̂ = φ and ψl(x) = 2lψ(2lx). Since supp f ⊂ [−2, 2] and

|ψl(x) ≤ C2l(1 + 2l|x|)−Q−s−1

so ∫
|x|>4

|fl|2(1 + |x|)2Q ≤
(∫
|f |
)2

C

∫
|x|>4

22l(2l(|x| − 2)−2Q−2s−2(1 + |x|)2Q
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≤ C‖f‖2H(s)I

Now (|x| − 2) ≥ 1 so

(2l(|x| − 2))−2s ≤ 2−2sl.

Moreover

(2l(|x| − 2))−2Q(1 + |x|)2Q ≤ C.

Finally

I ≤ C2−2sl

∫
|x|>4

22l2−2l(|x| − 1)−2 ≤ C2−2sl

Homogeneous estimates

We fix a homogeneous norm on N , that is a function | · | on N such that

|x| ≥ 0, |x| = 0 ⇐⇒ x = 0 |D2k(x)| = 2k|x|.

We put w(s, n) = |n|Q. We will consider w both as function on N and as a function on G

(independent on the coordinate from A).

In this section we consider functions on N , so we will simply write L instead of L1.

On N since L is homogeneous µ is homogeneous too:

‖F (
√
L)‖2L2 = c

∞∫
0

|F (x)|2xQ−1dx.

(1.4). Theorem. If supp f ⊂ [1/2, 2], ε > 0, then

‖f(
√
L)‖L1 ≤ C‖f(

√
L)‖L2(1+|x|Q+ε) ≤ C ′‖f‖H( Q

2 +ε).

P. Apply (1.3) and Plancherel on N .

(1.5). Lemma. On N

‖
∑

Dkfk‖2L2(w) ≤ Cε
∑
‖fk‖2L2(1+|x|Q+ε)

P. Dkfk are almost orthogonal in L2(w).

Let J = x∂x be generator of dilations on R1.
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(1.6). Lemma. If s > Q
2 , n >

Q
2 , f(t)→ 0 when t→∞, then

‖f(L)‖2L2(w) ≤ C
∫
‖φf(t·)‖2H(s)

dt

t
,

‖f(L)‖2L2(w) ≤ C
∫ (
|Jnf |2(t) + |Jf |2(t)

) dt
t
.

P. To prove the first inequality, let φ be a C∞ function on R+ such that
∑
φ(2kt) = 1 for

t > 0. Put fk(t) = f(2kt)φ(t). We have

f(L) =
∑

fk(2kL) =
∑

Dkfk(L)

and ∑
‖fk‖2H(s) ≤ C

∫
‖φf(t·)‖2H(s)

dt

t

However, one can show that

‖fk(L)‖2L2(1+|x|Q+ε) ≤ C‖fk‖
2
H(s)

so the first inequality follows from (1.5) .

Put ck = f(2k+1)− f(2k).

|ck|2 = |
2k+1∫
2k

Jf
dt

t
|2 ≤

2k+1∫
2k

|Jf |2 dt
t

2k+1∫
2k

dt

t
≤ log(2)

2k+1∫
2k

|Jf |2 dt
t

so ∑
|ck|2 ≤ log(2)

∫
|Jf |2 dt

t
.

Let ψ be a C∞ function on R+ such that ψ(t) = 0 for t ≥ 2 and ψ(t) = 1 for t ≤ 1. Put

g(t) = −
∑
ckψ(2−kt), h = f − g. To see that series defining g is convergent note that for

given t there is k0 such that terms with index k < k0 are equal to 0 and terms with index

k > k0 are equal to ck. Also
∑m
k=l ck = f(2m+1)− f(2l). Since f(t) goes to 0 when t goes

to ∞, the series of ck is convergent. This argument also shows that for integral l we have

g(2l) = f(2l). Now

g(L) = −
∑

ckD−kψ(L)

and (by (1.5) )

‖g(L)‖2L2(w) ≤ C
∑
|ck|2 ≤ C ′

∫
|Jf |2 dt

t
.
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Next, h(2k) = 0 so
2k+1∫
2k

|h|2 dt
t
≤

2k+1∫
2k

 t∫
2k

|Jh|(s)ds
s

2

dt

t

≤ log(2)

2k+1∫
2k

t∫
2k

|Jh|2(s)
ds

s

dt

t

≤ log(2)2

2k+1∫
2k

|Jh|2(t)
dt

t

so ∫
|h|2 dt

t
≤ log(2)2

∫
|Jh|2(t)

dt

t
.

Now, we get the second inequality applying the first inequality to h.

(1.7). Lemma. If N = R2n, L =
∑2n
j=1 ∂

2
j , then

‖f(L)‖2L2(w) ≥ c
∞∫

0

(
|Jnf |2 + |Jf |2

) dt
t

P. One easily checks that left side has form∫
|
n∑
k=1

ckJ
kf |2 dt

t
.

For n = 1 this gives the claim. Let Ln be laplacian on R2n. Strightforward calculation

shows that

‖f(Ln)‖2L2(w) ≤ Cn‖f(Ln+1)‖2L2(w).

Now we proceed by induction on n: we get the estimate for lower order terms from the

inductive assumption.

AN groups

The distance naturally associated to L (optimal control metric) for our groups is given by

the formula

d(s, n) = arccosh(
e−2s + 1 + |n|2

e−s
)

provided that |n| is the optimal control distance between n and e associated to L1 on N .

Put Br = {x ∈ G : d(x, e) < r}.
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(1.8). Lemma. ∫
Br

(1 + w)−1 ≤ r2

For Iwasawa AN groups we know the Plancherel measure of L — there is a µ such that

‖f(L)‖2 =

∫
|f(λ)|2 dµ(λ)

where dµ = h(λ)dx, h is bounded by a polynomial and h(λ) ≈ λ
1
2 for small λ (cf. for

example [11]). What we need is the following estimate

‖f(
√
L)‖2 ≤ C

∫
|f(λ)|2(λ2 + λQ)dλ.

Main property of Iwasawa AN group is that ∆ is invariant under a large group – in the

rank 1 case isometries are transitive on spheres. This implies that functions of ∆ are radial,

and that for L we have

F (L)(x) = m1/2ν(x)

where ν is radial.

(1.9). Lemma. ∫
Br

|f(L)|2w ≤ Cr
∫
Br

|f(L)|2

P. ψ = f(L) has the following form

ψ(s, n) = e
−Qs

2 ν(d((s, n), e))

where ν is function on R+. On most of the annulus r−1 < d((s, n), e) < r we approximatly

have

|n| ≈ e
r−s
2

(more precisely |n| is a function of r and s, if d((s, n), e) < r then |n| < e
r−s
2 , and if

|s| < r − 1, d((s, n), e) = r, then |n| > ce
r−s
2 ), so∫

r−1<d((s,n),e)<r

ψ2 ≈
r∫

r−1

ν2

r∫
−r

eQse
Q(r−s)

2 ≈ eQr
r∫

r−1

ν2

and ∫
r−1<d((s,n),e)<r

ψ2w ≈
r∫

r−1

ν2

r∫
−r

eQseQ(r−s) ≈ reQr
r∫

r−1

ν2

Let A1 be the subalgebra of L1(N) generated by L1.
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(1.10). Lemma. If f(λ) =
∑
cke
−tkλ, tk > 0, then f(L) ∈ L1(ds,A1), moreover the

Gelfand transform of f(L) along N is independent of N

P. First consider N = R. Mapping (s, n) 7→ (s,−n) is an automorphism of G preserving

L, so pt is symmetric in n. Put

ht(s, λ
2) =

∫
pt(s, n)eiλndn.

ht(s, λ) is defined for λ ≥ 0. Since pt is holomorphic semigroup on L1

∂tht(s, λ) = ∂2
sht(s, λ)− e−2sλht(s, λ),∫

sup
λ
|ht(s, λ)| ds = 1

and

lim
t→0+

ht(s, λ) = δ(s).

We return now to general N . It is easy to see that putting

T (t)(s, n) = h(s, L1)(n)

we get continuous family of contractions on L2(G). Moreover

∂tT (t) = (∂2
s − e−2sL1)T (t) = LT (t),

lim
t→0+

T (t) = I

hence T (t) = e−tL. This gives the conclusion for pt, that is for f(λ) = e−tλ, and than we

get the claim by linearity.

(1.11). Lemma. If supp f̂ ⊂ [−r, r], then for r > 1, and even Q,

‖f(
√
L)‖L1 ≤ Cr3/2

 ∞∫
0

|f(x)|2(x2 + xQ+2)dx

1/2

and for r ≤ 1,

‖f(
√
L)‖L1 ≤ Cr(Q+1)/2

 ∞∫
0

|f(x)|2(x2 + xQ)dx

1/2

12



P. If r ≤ 1, then

‖f(
√
L)‖L1 ≤

 ∫
|x|<r

1


1/2

‖f(
√
L)‖L2

≤ Cr(Q+1)/2

 ∞∫
0

|f(x)|2(x2 + xQ)dx

1/2

.

If r > 1, then Q is even. Next, let L̃ be the laplacian on Iwasawa type AN with N = RQ+2.

We have

‖f(
√
L)‖L1 ≤

 ∫
|x|<r

1

1 + w


1/2

‖f(
√
L)‖L2(1+w)

Now by (1.6) , (1.7) , (1.10) and (1.9)

‖f(
√
L)‖2L2(1+w) ≤ C1‖f(

√
L̃)‖2L2(1+w)

≤ C2r‖f(
√
L̃)‖2L2

so

‖f(
√
L)‖L1 ≤ Cr3/2

 ∞∫
0

|f(x)|2(x2 + xQ+2)dx

1/2

Proof of (1.2) : We split F . Let ψ be C∞c function such that supp ψ ⊂ [1/2, 2] and for

all x > 0
∑
ψ(2kx) = 1. We write F (x) =

∑
Fk(x), where Fk(x) = m(x)ψ(2−kx). It is

enough to prove that for k ≤ 0 and s > 3/2 we have

‖Fk(
√
L)‖L1 ≤ C‖δ2kFk‖H(s)

and that for k ≥ 0 and s > (Q+ 1)/2 we have

‖Fk(
√
L)‖L1 ≤ C‖δ2kFk‖H(s).

Fix k ≤ 0. We split f = Fk using (1.3) (with Q replaced by even number greater then

Q+ 2). By (1.11)

‖fl(
√
L)‖L1 ≤ C(2l−k)3/22−sl23k/2‖δ2kFk‖H(s)

= C2( 3
2−s)l‖δ2kFk‖H(s)

so

‖f(
√
L)‖L1 ≤

∑
‖fl(
√
L)‖L1 ≤ C ′‖δ2kFk‖H(s).

Case k ≥ 0 is similar.
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[17] L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta

Math. 104 (1960), 93–140.

[18] A. Hulanicki, Subalgebra of L1(G) associated with Laplacian on a Lie group,

Colloq. Math. 31 (1974), 259-287.

[19] J. Ludwig, D. Müller, Sub-Laplacians of holomorphic Lp-type on rank one

AN -groups and related solvable groups, preprint.

[20] G. Mauceri, S. Meda, Vector-Valued Multipliers on Stratified Groups, Revista

Math. Iberoamericana (6), 141-154.

[21] D. Müller, E. M. Stein, On spectral multipliers for Heisenberg and related

groups, J. de Math. Pure et Appl. 73 (1994), 413-440.

[22] S. Mustapha, Multiplicateurs spectraux sur certains groupes non-unimodulaires,

Harmonic Analysis and Number Theory, CMS Conf. Proceedings, Vol 21, 1997.

[23] S. Mustapha, Multiplicateurs de Mikhlin pour une classe particulière de groupes

non-unimodulaires, Ann. Inst. Fourier 48 (1998), 957–966.

[24] D. Poguntke, Algebraically irreducible representations of L1-algebras of expo-

nential Lie groups, Duke Math. J. 50 (1983), 1077–1106.

[25] A. Sikora, Multiplicateurs associés aux souslaplaciens sur les groupes homogènes,
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