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EXPONENTIAL GROWTH GROUPS

WALDEMAR HEBISCH AND TIM STEGER

Abstract. We propose a simple abstract version of Calderón–

Zygmund theory, which is applicable to spaces with exponential

volume growth, and then show that important specific operators

can be treated within this framework.

1. Abstract Calderón–Zygmund theory

Throughout we use the usual convention that C stands for a pos-

itive constant, usually a large positive constant, whose precise value

varies from occurrence to occurrence. However, to avoid writing such

curiosities as “C + C + 3C ≤ C” we sometimes use C ′, C ′′, . . . instead

of C. The precise values of C ′, C ′′, . . . also change from occurrence to

occurrence.

Definition 1.1. We say that the space M with metric d and Borel

measure µ has the Calderón–Zygmund property if there exists a con-

stant C such that for every f in L1 and for every λ > C
∥f∥L1

µ(M)
(λ > 0

if µ(M) =∞) we have a decomposition f =
∑
fi + g, such that there

exist sets Qi, numbers ri, and points xi satisfying:

• fi = 0 outside Qi,

•
∫
fi dµ = 0,

• Qi ⊂ B(xi, Cri),

•
∑
µ(Q∗

i ) ≤ C
∥f∥L1

λ
, where Q∗

i = {x : d(x,Qi) < ri},
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•
∑
‖fi‖L1 ≤ C‖f‖L1 ,

• |g| ≤ Cλ.

Since g = f−
∑
fi, we have ‖g‖L1 ≤ C ′‖f‖L1 , hence ‖g‖2L2 ≤ C ′′λ‖f‖L1 .

If K(x, y) is any measurable kernel defined on M ×M , then let K

also denote the associated integral operator:

(Kf)(x) =

∫
M

K(x, y)f(y) dy .

Theorem 1.2. If M has the Calderón–Zygmund property, if T =∑
n∈ZKn is bounded on L2, and if for constants C, 0 < c < 1, a > 0,

b > 0 ∫
|Kn(x, y)|(1 + cnd(x, y))a dx ≤ C ,∫

|Kn(x, y)−Kn(x, z)| dx ≤ C(cnd(y, z))b ,

then T is of weak type (1, 1) and bounded on Lp, 1 < p ≤ 2.

Remark 1.3. If
∑
Kn is strongly convergent on L2, then easy extensions

to our arguments show that the sum is also strongly convergent on Lp,

1 < p ≤ 2 and is convergent in measure for arguments in L1. Simi-

larly, almost everywhere convergence on L2 implies almost everywhere

convergence on Lp, 1 ≤ p ≤ 2.

Remark 1.4. We find the given formulation very convenient. However,

the assumption about Kn may be replaced by the weaker condition∫
d(x,y),d(x,z)>εd(y,x)

|K(x, y)−K(x, z)|dµ(x) ≤ Cε

with ε > 0 small enough.

Lemma 1.5. Let fi, Qi, ri, xi, and Q∗
i be as in 1.1. Then there exists C

such that for all i∑
n:cnri≥1

∫
(Q∗

i )
c

|Knfi|(x) dx ≤ C‖fi‖L1 .
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Proof.∫
(Q∗

i )
c

|Knfi|(x) dx

≤ ‖fi‖L1 sup
y∈Qi

∫
(Q∗

i )
c

|Kn(x, y)| dx ≤ ‖fi‖L1 sup
y

∫
d(x,y)≥ri

|Kn(x, y)| dx

≤ (cnri)
−a‖fi‖L1 sup

y

∫
d(x,y)≥ri

|Kn(x, y)|(1 + cnd(x, y))a dx

≤ C(cnri)
−a‖fi‖L1 .

Hence,∑
n:cnri≥1

∫
(Q∗

i )
c

|Knfi|(x) dx ≤ C‖fi‖L1

∑
n:cnri≥1

(cnri)
−a ≤ C ′‖fi‖L1 . □

Lemma 1.6. Let fi, Qi, ri, xi, and Q∗
i be as in 1.1. Then there exists C

such that for all i ∑
n:cnri<1

∫
|Knfi|(x) dx ≤ C‖fi‖L1 .

Proof. Since
∫
fi(y)dy = 0,∫

|Knfi|(x) dx =

∫ ∣∣∣∣∫
Qi

Kn(x, y)fi(y)dy

∣∣∣∣ dx
=

∫ ∣∣∣∣∫
Qi

(Kn(x, y)−Kn(x, xi))fi(y)dy

∣∣∣∣ dx
≤
∫ ∫

Qi

|Kn(x, y)−Kn(x, xi)||fi(y)|dy dx

≤ ‖fi‖L1 sup
y∈Qi

∫
|Kn(x, y)−Kn(x, xi)| dx

≤ C‖fi‖L1 sup
y∈Qi

(cnd(y, xi))
b ≤ C ′(cnri)

b‖fi‖L1 .

Hence,∑
n:cnri<1

∫
|Knfi|(x) dx ≤

∑
n:cnri<1

C ′(cnri)
b‖fi‖L1 ≤ C ′′‖fi‖L1 . □
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Proof of 1.2. By the Marcinkiewicz interpolation theorem it is enough

to show that T is of weak type (1, 1). Fix λ > 0. If λ ≤ C
∥f∥L1

µ(M)
, then

µ({x : |Tf | > λ}) ≤ µ(M) ≤ C
‖f‖L1

λ

and we are done. So assume that λ > C
∥f∥L1

µ(M)
and fix a Calderón–

Zygmund decomposition of f . Put E = {x :
∑

n,i |Knfi| > λ
2
}, E1 =⋃

iQ
∗
i . By 1.5 and 1.6,∫

Ec
1

∑
n,i

|Knfi| ≤
∑
i

∫
(Q∗

i )
c

∑
n

|Knfi| ≤ C
∑
i

‖fi‖L1 ≤ C ′‖f‖L1

so

|E − E1| ≤
2C ′‖f‖L1

λ
.

Now

|{x : |Tf(x)| > λ}| ≤ |{x : |Tg(x)| > λ

2
}|+ |E|

≤
4‖Tg‖2L2

λ2
+ |E1|+ |E − E1| ≤

C ′′λ‖f‖L1

λ2
+ C
‖f‖L1

λ
+

2C ′‖f‖L1

λ

≤ C ′′′‖f‖L1

λ
. □

Remark 1.7. The above proof of 1.2 remains valid using the weaker

hypotheses of sublinearity, namely

|(Tf)(x)| ≤
∑
n

|(Knf)(x)| ,

|(Kn(f1 + f2))(x)| ≤ |(Knf1)(x)|+ |(Knf2)(x)| .

2. Main theorems

Let T be a homogeneous tree of order q + 1 (so each vertex has

q + 1 neighbours). On T we consider the natural distance d (length of

the shortest path between two vertices). We fix an infinite geodesic g

in T . We fix a numeration of the vertices in g (so we get a mapping

N : g 7→ Z such that |N(x)−N(y)| = d(x, y) for x, y ∈ g).
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Think of the tree as hanging down from the point at infinity de-

fined by the ray of g where N → +∞. With that picture in mind

we define the level function, l(x), by the formula l(x) = N(x′) −

d(x, x′), where x′ is the unique vertex of g closest to x. Let (Af)(x) =
1

2
√
q

∑
d(x,y)=1 q

(l(y)−l(x))/2f(y). For a complex function f on the tree we

define the gradient ∇f by the formula

(∇f)(x) =
∑

y:d(x,y)=1

|f(y)− f(x)| .

We define the measure µ on T by the formula∫
f dµ =

∑
f(x)ql(x) .

Note thatA is self-adjoint on L2(dµ). Also note that ‖A‖L1(dµ)→L1(dµ) ≤

1, hence that ‖A‖Lp(dµ)→Lp(dµ) ≤ 1 for 1 ≤ p ≤ ∞. Thus the L2-

spectrum of A lies in [−1, 1]. For any θ ∈ R the function qiθl(x) is

“almost” in L2(dµ). More precisely qiθl(x)e−εd(x,x0) ∈ L2(dµ) for any

ε > 0 and x0 ∈ T . One calculates that A(qiθl(x)) = cos θ qiθl(x) and a

slightly more involved calculation using qiθl(x)e−εd(x,x0) shows that cos θ

is in the L2-spectrum of A. Hence:

Remark 2.1. The L2-spectrum of A is precisely [−1, 1].

Notation 2.2. If t > 0 and if H(λ) is any function defined for real λ,

(DtH)(λ) = H(tλ) .

Theorem 2.3. Fix any nonzero ϕ ≥ 0 in C∞
c ([1/4, 2]). Suppose that

F (λ) = H(1 + λ) (or F (λ) = H(1 − λ)) where suppH ⊂ [0, 2). If for

some s > 3/2

sup
t>0
‖(DtH)ϕ‖H(s) <∞ ,

then F (A) is of weak type (1, 1) and bounded on Lp(dµ), 1 < p < ∞.

Moreover ∇(I − A)−1/2 is of weak type (1, 1) and bounded on Lp, 1 <

p ≤ 2.
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Let G = R⋉RQ with s ∈ R acting on RQ by n 7→ e−sn. Multiplica-

tion is given by

(s1, n1)(s2, n2) = (s1 + s2, e
s2n1 + n2) .

This G is the Iwasawa (or AN) group corresponding to the real rank 1

symmetric space SO+(Q+1, 1)/SO(Q). There is a distinguished Lapla-

cian on G, which is up to a first order term (or up to conjugation)

equal to the Laplace–Beltrami operator on the symmetric space. Right-

invariant vector fields are

X0 = ∂a , Xi = ea∂ni
for i = 1, . . . , Q.

Then we put

L = −
∑

0≤i≤Q

X2
i .

We consider L on Lp(G) with respect to left-invariant Haar measure

dx (which is equal to Lebesgue measure in our coordinates).

Theorem 2.4. Fix any nonzero ϕ ≥ 0 in C∞
c ([1/2, 2]). If s0, s1 > 3

2
,

s1 >
Q+1
2

,

sup
t≥1
‖(DtF )ϕ‖H(s0) <∞ ,

sup
0<t≤1

‖(DtF )ϕ‖H(s1) <∞ ,

then F (L) is of weak type (1, 1) and bounded on Lp, 1 < p < ∞.

Moreover ∇L−1/2 is of weak type (1, 1) and bounded on Lp, 1 < p ≤ 2.

3. Covering lemma on the weighted tree

We defined the measure µ on T by the formula∫
f dµ =

∑
f(x)ql(x) .

We will write |R| as a shorthand for the measure µ(R). Say that x lies

below y (and that y lies above x) if l(x) = l(y) − d(x, y). Say that
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R ⊂ T is an admissible trapezoid iff R consists of a single point xR,

or if there is xR ∈ T and an integer h > 0, such that R consists of all

x below xR such that h ≤ l(xR) − l(x) < 2h. Put h(R) = h in this

second case and h(R) = 1 in the one point case. In either case one

finds |R| = h(R)ql(xR). We call w(R) = ql(xR) the width of R.

For an admissible trapezoid R we define its envelope R̃ as follows: if

R consists of one point, then R̃ = R, otherwise R̃ consists of all x below

xR such that h/2 ≤ l(xR) − l(x) < 4h. Note that if R1 ∩ R2 6= ∅ and

w(R1) ≥ w(R2), then R2 ⊂ R̃1. It is also easy to check that |R̃| ≤ 4|R|.

We define a maximal function M by the formula

(Mf)(x) =
∑
x∈R

|R|−1

∫
|f(y)| dµ(y) = sup

x∈R
|R|−1

∑
y∈R

|f(y)|ql(y)

where the sup is taken over admissible trapezoids R.

Theorem 3.1. T with measure µ and distance d has the Calderón–

Zygmund property. Furthermore M is of weak type (1, 1).

Proof. Let f ∈ L1(dµ). Let S0 be the family of all admissible trape-

zoids R such that ∑
x∈R

|f(x)|ql(x) ≥ λ|R| .

Start by listing S0 in some arbitrarily chosen order. Choose R0 to be

an admissible trapezoid in S0 of largest width (possible since the width

is bounded by |R|, and |R| ≤ ‖f‖L1/λ). In case of ties, choose that

trapezoid of largest width which occurs earliest in the listing of S0.

Now we proceed inductively: Si+1 consists of all R ∈ Si disjoint from

R0, . . . , Ri and Ri+1 is an admissible trapezoid in Si+1 of largest width.

Since the Ri are disjoint, and since each Ri ∈ S we have∑
i

|Ri| ≤
1

λ

∑
i

∑
x∈Ri

|f(x)|ql(x) ≤ ‖f‖L
1

λ
.
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Consequently ∑
i

|R̃i| ≤ 4
∑
i

|Ri| ≤
4‖f‖L1

λ
.

If
∑

x∈R |f(x)|ql(x) ≥ λ|R|, then by construction R intersects some Ri

with width not smaller then the width of R, hence with R ⊂ R̃i. So,

putting E =
⋃
R̃i, we have Mf ≤ λ outside E, and |E| ≤ 4∥f∥L1

λ
, so

the second claim is proved.

To get the fi in the Calderón–Zygmund decomposition, we first define

auxiliary sets Ui and functions hi as follows:

Ui = R̃i −
⋃
j<i

R̃j ,

hi(x) = f(x) for x ∈ Ui and hi(x) = 0 for x 6∈ Ui. We claim that∑
x

|hi(x)|ql(x) ≤ 6qλ|R̃i| .

Indeed it is easy to find three admissible trapezoids P1, P2, P3, such

that w(Pk) > w(Ri) (k = 1, 2, 3), |Pk| ≤ 2q|R̃i|, and R̃i ⊂ P1 ∪P2 ∪P3.

If ∑
x∈Pk

|f(x)|ql(x) ≥ λ|Pk| ,

then there is j < i such that Pk ∩ Rj 6= ∅, hence Pk ⊂ R̃j, hence hi is

zero on Pk. One way or the other
∑

x∈Pk
|hi(x)|ql(x) ≤ λ|Pk|, which

means that∑
x

|hi(x)|ql(x) ≤
3∑

k=1

∑
x∈Pk

|hi(x)|ql(x) ≤
3∑

k=1

λ|Pk| ≤ 6qλ|R̃i|

as claimed. We put

fi = hi −
(∑

x

hi(x)q
l(x)

)
χRi

|Ri|
, g = f −

∑
fi .

Now we put Qi = R̃i, ri = h(Ri)/4 and we choose arbitrary xi ∈ Ri.

The conditions f = g +
∑
fi, fi = 0 outside Qi, and

∫
fi dµ = 0 hold

by definition. It is easy to check that Qi ⊂ B(xi, 32ri). It is also easy
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to check that |Q∗
i | ≤ 2|Qi| so∑

|Q∗
i | ≤ 2|R̃i| ≤

8‖f‖L1

λ
.

Clearly ∑
i

∫
|fi| ≤ 2

∑
i

∫
|hi| ≤ 2

∫
|f | = 2‖f‖L1 .

Now, g is equal to f outside E =
⋃
R̃i, and

g =
∑
i

(∑
x

hi(x)q
l(x)

)
χRi

|Ri|

on E. Since (Mf)(x) ≤ λ outside E, a fortiori g(x) = f(x) ≤ λ

outside E. On E we observe that the Ri are disjoint so

sup
x∈E
|g|(x) ≤ sup

i

∣∣∣∣∑x hi(x)q
l(x)

|Ri|

∣∣∣∣ ≤ sup
i

6qλ|R̃i|
|Ri|

≤ 24qλ

which ends the proof. □

4. Integral kernels on the weighted tree

Let (Lf)(x) =
∑

d(x,y)=1 f(y). The spectral resolution of L is given

by the formula:

(F (L)f)(x) =
q

2π(q + 1)

∫ π

0

F (2
√
q cos θ)

∑
y

ϕθ(x, y)

|cθ|2
f(y) dθ

where

ϕθ(x, y) = q−d(x,y)/2
(
cse

iθd(x,y) + c̄se
−iθd(x,y)

)
= q−d(x,y)/22<(cseiθd(x,y))

and

cs =
−qi
q + 1

1

2 sin θ

(
eiθ − 1

q
e−iθ

)
.

When q is odd (so the tree may by identified with a free group) the

formula is given in [8] as Theorem 4.1 (one must change notation:

q 7→ 2r− 1, θ 7→ log(2r− 1)t). For even q the formula (and the proof)

in [8] still works. Let ql/2 stand for the operator f(x) 7→ ql(x)/2f(x).
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We have 2
√
qql/2A = Lql/2 so

(F (A)f)(x) =
q

2π(q + 1)

∫ π

0

F (cos θ)q−l(x)/2

×
∑
y

ql(y)/2q−d(x,y)/22<(cseiθd(x,y))
1

|cθ|2
f(y) dθ .

To simplify the sequel we put Ã = I − A. For our purpose we may

treat the real and imaginary parts of F separately, so we may assume

that F is real. Then

F (Ã)(x, y) = <
(
K(x, y)

∫ π

0

F (1− cos θ)eiθd(x,y)η(θ) sin θ dθ

)
= <(K(x, y)EF (d(x, y)))

where

K(x, y) = q(−l(y)−l(x)−d(x,y))/2 ,

η(θ) =
q

2π(q + 1)

2

c̄s sin θ
=

q

2π(q + 1)

4(q + 1)

qi
(
e−iθ − 1

q
eiθ
)

=
2

πi
(
e−iθ − 1

q
eiθ
)

and

(1) EF (k) =

∫ π

0

F (1− cos θ)eiθkη(θ) sin θ dθ .

Lemma 4.1. Let s ≥ 0 and let m be the integer satisfying s ≤ m.

Let a < b, c < d be fixed constants. Suppose ϕ : R → R is C(m) and

increasing with ϕ(c) < a, ϕ(d) > b, ϕ′ > 0. Then there is C depending

only on a, b, c, d, s, ‖1/(ϕ′)‖L∞ and ‖ϕ‖C(m) such that

‖F ◦ ϕ‖H(s) ≤ C‖F‖H(s) .

whenever suppF ⊂ [a, b].

Proof. This lemma only formulates a well-known fact. □



MULTIPLIERS AND SINGULAR INTEGRALS 11

Lemma 4.2. Fix ε, 0 < ε ≤ 1. If s > 3
2
+ ε, then there exists C > 0

such that if for any nonnegative integer n we have

suppF ⊂ [2−2n−1, 2−2n+2] ∩ [0, 3/2],

then
∞∑
k=0

|EF (k)|(1 + k)(1 + 2−nk)ε ≤ C‖D2−2nF‖H(s) ,

∞∑
k=0

|EF (k)|(1 + 2−nk)ε ≤ C2−n‖D2−2nF‖H(s) ,

∞∑
k=0

|EF (k + 1)− EF (k)| (1 + k)(1 + 2−nk)ε ≤ C2−n‖D2−2nF‖H(s) .

Proof. Put

F (x) = (D22nG)(x) = G(22nx) .

Changing variables in equation 1 to t = 2nθ we get

EF (k) = 2−n

∫ π

1

G(22n+1 sin2(2−n−1t))η(2−nt) sin(2−nt)ei2
−ntk dt

= 2−2n

∫ π

1

H(t)ψl(t)e
itm dt = 2−2n

∫ π

1

H̃l(t)e
itm dt

where k = 2nm+ l, 0 ≤ l < 2n

H̃l(t) = H(t)ψl(t) ,

H(t) = G(22n+1 sin2(2−n−1t)) ,

ψl(t) = ei2
−ntl2n sin(2−nt)η(2−nt) .

One easily sees that ψl(t) and its derivatives are bounded uniformly in

n, l and t ∈ [0, π]. Also, each of the derivatives of ϕn = 22n+1 sin2(2−n−1t)

is uniformly bounded in n and ϕ′
n is uniformly bouded from below on

counterimage of suppGn, so by 4.1

‖H̃l‖H(s) ≤ C‖H‖H(s)‖ψl‖C(s) ≤ C ′‖G‖H(s) .
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Hence

∞∑
k=0

|EF (k)| (1 + k)(1 + 2−nk)ε

≤ 2n+1

2n−1∑
l=0

∞∑
m=0

|EF (2
nm+ l)| (1 +m)1+ε

≤ 2n+1

2n−1∑
l=0

(
∞∑

m=0

(|EF (2
nm+ l)| (1 +m)s)2

)1/2( ∞∑
m=0

(1 +m)2(1+ε−s)

)1/2

≤ C2n+12−2n

2n−1∑
l=0

‖H̃l‖H(s) ≤ C ′′‖G‖H(s) = C ′′‖D2−2nF‖H(s) .

The second estimate follows similarly. For the third estimate one should

note that ei(k+1)θ − eikθ = (1 − eiθ)eikθ and then the first factor con-

tributes 2−n to the final result. □

Recall that for a complex function f on the tree we define the gra-

dient ∇f by the formula

(∇f)(x) =
∑

w:d(x,w)=1

|f(w)− f(x)| .

The gradient so defined is a sublinear operator.

Lemma 4.3. Suppose d(y, z) = 1 and l(z) = l(y)− 1. Then

∑
x:d(x,y)=k

K(x, y)ql(x) =

1 for k = 0

2 + q−1
q
(k − 1) for k > 0

,

∑
x:d(x,y)=k

|K(x, y)−K(x, z)|ql(x) ≤ 2 ,

∑
x:d(x,y)=k

|∇xK(x, y)|ql(x) = 1− 1

q
≤ 2 .

Proof. Every vertex at distance k from y is reached starting from y

making p steps up and then k − p steps down. There is only one

possibility for each step up, while we have q choices when making a step

down. However, we should not go back on our steps, so if p, k− p > 0,
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then we have only q− 1 possibilities for the first step down. Also, note

that l(x)− l(y) = 2p− k. Hence

∑
x:d(x,y)=k

q(−l(y)−l(x)−d(x,y))/2ql(x) =
∑

x:d(x,y)=k

q(−l(y)+l(x)−k)/2

= qkq(−k−k)/2 +

( k∑
p=1

(q − 1)qk−p−1q(2p−k−k)/2

)
+ q(2k−k−k)/2

= 1 +
q − 1

q

(k−1∑
p=1

1

)
+ 1 .

In the second sum, values of K(x, y) and K(x, z) are equal, unless x lies

below z, so we get only the p = 0 term in the sum over p.

Similarly, in the third sum only the p = k term gives a nonzero con-

tribution. Moreover, for the unique x contributing to the p = k term,

the contribution |K(w, y) − K(x, y)| to ∇xK(x, y) is zero for all but

one w. For that one w, which is the unique vertex at distance one to x

which lies above x, we have l(w) = l(x) + 1, d(w, y) = d(x, y) + 1, and

K(w, y) = 1
q
K(x, y). □

Lemma 4.4. Fix ε, 0 < ε ≤ 1. If s > 3
2
+ ε, then there is C such that

if n is a nonnegative integer and suppF ⊂ [2−2n−1, 2−2n+2] ∩ [0, 3/2],

then ∑
x

|F (Ã)(x, y)| (1 + 2−nd(x, y))εql(x) ≤ C‖D2−2nF‖H(s) ,∑
x

|F (Ã)(x, y)− F (Ã)(x, z)|ql(x) ≤ C2−nd(y, z)‖D2−nF‖H(s) ,∑
x

|∇xF (Ã)|(x, y) (1 + 2−nd(x, y))εql(x) ≤ C2−n‖D2−nF‖H(s) .

Proof. We will prove only the second inequality (the first is easier, the

third is similar to the second). It is enough to prove the lemma for

real F . We may assume that d(y, z) = 1 and that l(z) = l(y) − 1.
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Then

∑
x

|F (Ã)(x, y)− F (Ã)(x, z)|ql(x)

=
∑
x

|<(K(x, y)EF (d(x, y))−K(x, z)EF (d(x, z)))|ql(x)

≤
∑
x

|K(x, y)−K(x, z)||EF (d(x, y))|ql(x)

+
∑
x

K(x, z)|EF (d(x, y))− EF (d(x, z))|ql(x) = S1 + S2 .

Now, by 4.2 and 4.3

S1 =
∑
k

|EF (k)|
∑

x:d(x,y)=k

|K(x, y)−K(x, z)|ql(x)

≤ 2
∑
k

|EF (k)| ≤ C2−n‖D2−nF‖H(s) .

To estimate the second sum note that if d(x, z) = k then d(x, y) = k±1,

so |EF (d(x, y))−EF (d(x, z))| ≤ |EF (k+1)−EF (k)|+|EF (k)−EF (k−1)|

(formally putting EF (−1) = EF (0)). Then (again using 4.2 and 4.3)

S2 ≤
∑
k

(|EF (k+1)−EF (k)|+|EF (k)−EF (k−1)|)
∑

x:d(x,z)=k

K(x, z)ql(x)

≤ 4
∑
k

|EF (k + 1)− EF (k)| (1 + k)

≤ C2−n‖D2−nF‖H(s) . □

Proof of 2.3. Let (−1)l represent the operator f(x) 7→ (−1)l(x)f(x).

Observe that −(−1)lAf = A((−1)lf). That is, A is conjugated to −A

by an operator which preserves all Lp(dµ)-norms as well as the weak-

L1(dµ) measure of the size of a function. Consequently, it is sufficient

to prove the first claim of the theorem in the case F (λ) = H(1− λ).

By standard estimates, the principal hypothesis on H is independent

of the choice of ϕ. Now fix nonnegative ϕ, ψ ∈ C∞
c ([1/2, 4]) such that
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ϕ = ψ2, and for all x > 0
∑∞

n=−∞ ϕ(22nx) = 1. We have

H(x) =
∞∑

n=−∞

Gn(x) =
∞∑
n=0

Gn(x) where Gn(x) = ϕ(22nx)H(x) .

Of course

H(Ã) =
∞∑
n=0

Gn(Ã) .

We are going to show that the Gn(Ã) satisfy the assumptions of 1.2.

By hypothesis, there is s > 3
2

and C independent of n such that

‖D2−2nGn‖H(s) ≤ C .

Fix ε, 0 < ε ≤ 1, such that s > 3
2
+ ε. By 4.4∫

|Gn(Ã)|(x, y) (1 + 2−nd(x, y))ε dµ(x)

=
∑
x

|Gn(Ã)(x, y)| (1 + 2−nd(x, y))εql(x) ≤ C‖D2−2nGn‖H(s) ≤ C ′

so the first assumption of 1.2 is satisfied. Similarly the second assump-

tion of 1.2 follows directly from 4.4 so we get first claim of 2.3.

To get the second claim write

1√
t
=
∑
n

ϕ(22nt)√
t

=
∑
n

Un(t) =
∑
n

ψ(22nt)√
t

ψ(22nt) =
∑
n

Vn(t)Wn(t) .

It is easy to see that (for any s > 0)

‖D2−2nUn‖H(s) = ‖2nU0‖H(s) = C2n ,

‖D2−2nVn‖H(s) = ‖2nV0‖H(s) = C2n ,

and

‖D2−2nWn‖H(s) = ‖W0‖H(s) = C .

Using the third part of 4.4 we have for some C = C(s)∫
|∇xVn(Ã)(x, y)| dµ(x) ≤ C
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so using the second part of 4.4 we get∫
|∇Un(Ã)(x, y)−∇Un(Ã)(x, z)| dµ(x)

≤
(
sup
w

∫
|∇Vn(Ã)(x,w)| dµ(x)

)
×
(∫
|Wn(Ã)(w, y)−Wn(Ã)(w, z)| dµ(w)

)
≤ C ′2−nd(y, z) .

In this way we have checked that

∇Un(Ã)

satisfies the second assumption of 1.2. We verify the first assumption

of 1.2 by direct application of 4.4 to Un(t). This ends the proof. □

5. A covering lemma on certain AN groups

Let G = R⋉N , N = Rn. We assume that the multiplication is given

by the formula

(t, x1, . . . , xn)(s, y1, . . . , yn)

= (t+ s, exp(a1s)x1 + y1, . . . , exp(ans)xn + yn)

where the ai 6= 0 are real numbers. In the sequel we will pretend that

ai are positive, negative ai are easy but tedious to handle. One easily

checks that Lebesgue measure on Rn+1 is left invariant, so we may

take it as Haar measure. On G we consider the natural right-invariant

riemanianian distance given by ds2 = dt2 +
∑

exp(−2tai) dx2i . Put

M = 2max(1, a1, . . . , an). Note that for large balls (say r > 1) we have

{(t, x) : |x| < cecr, |t| < cr} ⊂ B(0, r) ⊂ {(t, x) : |x| < eMr, |t| < r}

Lemma 5.1. G has the Calderón–Zygmund property.
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We need some preparation before the proof. We say that a paral-

lelopiped R is admissible iff (t, x) ∈ R if and only if

t ∈ [m02
k0 , (m0 + 1)2k0) ,

xi ∈ [mi2
ki , (mi + 1)2ki) for i = 1, . . . , n

where mi, ki for i = 0, . . . , n are integers and for k0 < 0 we have

e2M2k0 ≤ exp(−ai(m0 +
1

2
)2k0)2ki ≤ 4e8M2k0

i = 1, . . . , n and for k0 ≥ 0 we have

exp(M2k0+1) ≤ exp(−ai(m0 +
1

2
)2k0)2ki ≤ 4 exp(M2k0+3) .

We will write R = R(k0, . . . , kn,m0, . . . ,mn).

Note that there is C such that if R = R(k0, . . . , kn,m0, . . . ,mn) is

an admissible parallelopiped, xR is the centerpoint of R and rR = 2k0 ,

then R ⊂ B(xR, CrR) and |R∗| = |{x : d(x,R) < rR}| ≤ 32Q.

Lemma 5.2. If Q is an admissible parallelopiped, then there exists a

sequence of partitions Pj of Q such that

• each Pj consists of admissible parallelopipeds,

• for each j all R ∈ Pj have a common k0

• for each R ∈ Pj either R ∈ Pj+1 or R is a sum of two members

of Pj+1 (of equal volumes).

• the parallelopipeds in Pj are arbitrarily small for large j.

Proof. We write

Pj = {R(k0, . . . , kn,m0, . . . ,mn) ⊂ Q : k0 = f0(j) ,

ki = fi(j,m0), i = 1, . . . , n}

where fi are to be specified. Now, the second condition is satisfied

by definition. To satisfy the third condition we require that either
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f0(j + 1) = f0(j) and fi(j,m0) − 1 ≤ fi(j + 1,m0) ≤ fi(j,m0) or

f0(j+1) = f0(j)−1 and fi(j+1, 2m0) = fi(j+1, 2m0+1) = fi(j,m0).

The first case correspond to splitting (some of) parallelopipeds in x

coordinates, the second corresponds to splitting all parallelopipeds into

half in t coordinate. As a normalization we also require that f0(0) = k0,

that when splitting in x we perform as many splittings as allowed by

admissibility condition, and that Pj 6= Pj+1.

To finish the proof we should show how to divide Pj. If f0(j) ≤ 0,

then in each step we just substract one from fi (cycling over i, i =

0, . . . , n). So in the sequel we need only to handle f0(j) > 0. Our rules

make as keep f0(j) unchanged and decrease fi(j,m0), i = 1, . . . , n as

long as admissibility allows. So, we may assume that splitting in x

coordinates is forbidden. Hence, we have

exp(M2f0(j)+1) ≤ exp(−ai(m0 +
1

2
)2f0(j))2fi(j,m0) ≤ 2 exp(M2f0(j)+1)

Now according to our rules, we make f0(j + 1) = f0(j) − 1, fi(j +

1, 2m0) = fi(j + 1, 2m0 + 1) = fi(j,m0) and we should check that the

result is admissible. However

exp(−ai(2m0 +
1

2
)2f0(j+1)) = exp(−ai(m0 +

1

4
)2f0(j))

≥ exp(−ai(m0 +
1

2
)2f0(j)) exp(−M2f0(j))

so

exp(−ai(2m0 +
1

2
)2f0(j+1))2fi(j+1,2m0)

≥ exp(−M2f0(j)) exp(−ai(m0 +
1

2
)2f0(j))2fi(j,m0)

≥ exp(−M2f0(j)) exp(M2f0(j)+1)

= exp(M2f0(j)) = exp(M2f0(j+1)+1)
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which gives one of admissibility conditions (lower bound for 2m0). Sim-

ilar, computation gives upper bound for 2m0+1, and two other bounds

(upper bound for 2m0 and lower bound for 2m0 + 1). □

Proof of 5.1. Fix f and λ > 0. We should decompose f . First, note

that there is a partition P of G into dyadic parallelopipeds such that

for each Q ∈ P we have |Q| > ‖f‖L1/λ. Namely, let ψi(l,m0) be the

largest integers so that R(l, ψ1(l,m0), . . . , ψn(l,m0),m0,m1, . . . ,mn) is

admissible. We take l large enough and enough and write

G =
⋃

mi∈Z,m0∈{0,−1}

R(l, ψ1(l,m0), . . . , ψn(l,m0), . . . ,m0,m1, . . . ,mn)

∪
⋃

k≥l,mi∈Z,m0∈{1,−2}

R(k, ψ1(k,m0), . . . , ψn(k,m0),m0,m1, . . . ,mn) .

Next, on each Q ∈ P we apply 5.2 and use standard stopping time

argument. □

6. Integral kernels on Lie groups

On a Lie group with right-invariant distance function d(·, ·), let

d(x) = d(x, e), so d(x, y) = d(xy−1).

Theorem 6.1. Assume G and L are as in [22]. If ε > 0, if s0, s1 >
3
2
+ ε, if s1 > Q+1

2
+ ε, then there is C such that for suppF ⊂ [1/2, 2]

and t ≥ 1 ∫
|F (tL)|(x) (1 + t−1/2d(x))ε ≤ C‖F‖H(s0)

while for 0 < t ≤ 1∫
|F (tL)|(x) (1 + t−1/2d(x))ε ≤ C‖F‖H(s1) .

Proof. This follows using the methods of [22]. □
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In particular, 6.1 applies to the group in the statement of Theo-

rem 2.4, namely G = R ⋉ RQ where s ∈ R acts on RQ via n 7→ e−sn.

For our next result, 6.2, our attention will be exclusively on that group.

We recall several conventions relative to convolution and the modular

function. As always, convolution of measures is defined by∫
G

f(x) d(µ1 ∗ µ2)(x) =

∫
G×G

f(yz) dµ1(y) dµ2(z) .

The ∗-operation on measures is dµ∗(x) = dµ̄(x−1). One has (µ1∗µ2)
∗ =

µ∗
2∗µ∗

1. For Dirac measures δx∗δy = δxy and (δx)
∗ = δx−1 . If ‖µ‖ stands

for the total variation, then ‖µ1 ∗ µ2‖ ≤ ‖µ1‖ ‖µ2‖, ‖µ∗‖ = ‖µ‖.

The base measure on G, denoted simply by dx, is taken as left-

invariant Haar measure, and thus d∗x is right-invariant Haar measure.

The modular function is defined by d∗x = δ(x) dx. It follows that

d(xx0) = d∗(x−1
0 x−1) = δ(x−1

0 x−1) d(x−1
0 x−1)

= δ(x−1
0 x−1) d(x−1) = δ(x−1

0 x−1) d∗(x) = δ(x−1
0 ) d(x) .

For the group under consideration, R⋉RQ, one finds that dx is ordinary

Lebesgue measure and δ(s, n) = e−Qs.

For the purposes of convolution and the ∗-operation, we identify the

function f(x) with the measure f(x) dx. One then finds:

(f1 ∗ f2)(x) =
∫
G

f1(y)f2(y
−1x) dy , (δx ∗ f)(z) = f(x−1z) ,

f ∗(x) = δ(x)f̄(x−1) , (f ∗ δx)(z) = δ(x)f(zx−1) .

Having fixed this identification it is automatic that (f1 ∗ f2)∗ = f ∗
2 ∗ f ∗

1 ,

(f ∗ δx)∗ = δx−1 ∗ f ∗, etc. Since L1-norm (relative to dx) corresponds

to total variation, one has ‖f1 ∗ f2‖L1 ≤ ‖f1‖L1‖f2‖L1 , ‖f ∗‖L1 = ‖f‖L1 .

The inner product for L2(dx) may be written as 〈f1, f2〉 = (f ∗
2 ∗ f1)(e).
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As explained in Section 2 we work with the right-invariant vector

fields Xi, and the right-invariant Laplacian L given by

X0 = ∂s , Xi = es∂ni
, i = 1, . . . , Q , L = −

∑
0≤i≤Q

X2
i .

On L2(dx) this Laplacian is symmetric and may be extended to a posi-

tive self-adjoint operator. Let pt be the heat kernel for (G,L), meaning

that exp(−tL)(f) = pt ∗ f . Since exp(−tL) is self-adjoint, one has

pt = p∗t .

We use the (right-invariant) distance function adapted to the vector

fields Xi, 0 ≤ i ≤ Q. Here follows the usual definition. For fixed

x, y ∈ G consider all smooth curves γ : [0, 1]→ G such that γ(0) = x,

γ(1) = y. For such a curve write γ′(t) =
∑

i ai(t)Xi. Then

d(x, y) = inf
γ

(∫ 1

0

∑
i

|ai(s)|2 ds
)1/2

.

It follows that |(Xid)(x)| ≤ 1 in the Lipschitz sense. For the group

under consideration d(x) is smooth (except at x = e), so this inequality

is valid in the naive sense (except at x = e).

Theorem 6.2. Assume G = R⋉RQ and L are as in 2.4. There exist C

and ε > 0 such that uniformly in t > 0∑
i

∫
|Xipt(x)| exp(εt−1/2d(x)) dx ≤ Ct−1/2 .

Proof. As long as t is bounded from above the estimate follows easily

from well-known pointwise bounds on the heat kernel, see for example

[18] (in fact [18] is an overkill, since for elliptic operators the estimates

we need where already known in the sixties). So it is enough to prove

our claim for t > 1.

We may assume thatQ = 2l is even. IndeedGQ is a quotient ofGQ+1,

the heat kernel on GQ is the push-forward of the heat kernel on GQ+1,

and for 0 ≤ i ≤ Q the vector fields (Xi) on GQ and GQ+1 respectively
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match up under the quotient map. Consequently our estimate on GQ+1

implies the same estimate on GQ.

With Q = 2l one gets

δ(s, n) = e−2ls , δ(s, n)1/2 = e−ls .

The distance on G is given by the formula

(2) d((s, n), e) = arc cosh
(
1
2
(es + e−s(1 + |n|2)

)
.

The following explicit formula for pt(s, n) is taken from [5].

pt(x) = ectδ1/2qt(d(x, e)) ,

qt(r) = Ce−ctt−1/2Dl
r exp(−r2/(4t))

where

Dr =
−1

sinh(r)
∂r .

The reduction to even Q avoids the use of fractional derivatives in the

above formula.

The first stage of our proof follows along the lines of [5]. Put

Φ1(r) =
r

sinh(r)
, Φj+1 = DrΦj .

Easy induction shows that one can write

CDl
r exp(−r2/(4t)) = exp(−r2/(4t))

l∑
k=1

t−kψl,k(r) ,

ψl,k =
∑
|α|=l

cα

k∏
i=1

Φαi

where the cα are positive.
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One then checks that when r →∞

Φj(r) = re−jr +O(e−jr) ,

∂rΦj(r) = ∂r(re
−jr) +O(e−jr)

so

ψl,k(r) = rke−lr +O((r + 1)k−1e−lr) ,

∂rψl,k(r) = ∂r(r
ke−lr) +O((r + 1)k−1e−lr) .

It is known that the Φj are all positive. So, likewise, all the ψl,k are

positive. Now the formula for the heat kernel reads

(3) pt =
l∑

k=1

t−(2k+1)/2 exp(−d2/(4t))δ1/2ψl,k(d) .

Hence

(4) Xipt = t−3/2 exp(−d2/(4t))Xi(δ
1/2ψl,1(d))

+ (Xid/2)t
−5/2d exp(−d2/(4t))δ1/2ψl,1(d)

+Xi

(
l∑

k=2

t−(2k+1)/2 exp(−d2/(4t))δ1/2ψl,k(d)

)
.

We will deal with these three terms separately. The first term (which

we will deal with last) is the really delicate one. To bound the second

term, we use the inequality |Xid| ≤ 1:

|(Xid/2)t
−5/2d exp(−d2/(4t))δ1/2ψl,1(d)|

≤ Ct−2(d2/(4t))1/2 exp(−d2/(4t))δ1/2ψl,1(d)

≤ C ′t−2 exp(−d2/(8t))δ1/2ψl,1(d)

≤ C ′′t−1/2p2t .

Now use the fact that ‖p2t‖L1 = 1.
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Although the third term of (4) is given by a complicated formula,

it is really of lower order (in t) than the others, and can be bounded

quite directly. Consider the term for some k ≥ 2.

|Xi

(
t−(2k+1)/2 exp(−d2/(4t))δ1/2ψl,k(d)

)
|

= |t−(2k+1)/2
(
(Xi exp(−d2/(4t)))δ1/2ψl,k(d)

+ exp(−d2/(4t))(Xiδ
1/2)ψl,k(d)

+ exp(−d2/(4t))δ1/2(Xiψl,k(d)
)
|

= |t−(2k+3)/2(Xid/2)d exp(−d2/(4t))δ1/2ψl,k(d)

+ t−(2k+1)/2
(
exp(−d2/(4t))(Xiδ(e))δ

1/2ψl,k(d)

+ exp(−d2/(4t))δ1/2(Xid)∂rψl,k(d)
)
|

≤ Ct−(2k+3)/2d exp(−d2/(4t))δ1/2(d+ 1)ke−ld

+ Ct−(2k+1)/2 exp(−d2/(4t))δ1/2(d+ 1)ke−ld

≤ C ′t−2(1 + dkt−k/2 + dk−1t−(k−1)/2) exp(−d2/(4t))δ1/2(d+ 1)e−ld

≤ C ′′t−2 exp(−d2/(8t))δ1/2(d+ 1)e−ld ≤ C ′′′t−1/2p2t .

At the next to the last line, we use k ≥ 2 to get t−2.

For the first term of (4), where k = 1, we must give a more detailed

argument. In that term occurs the factor Xi(δ
1/2ψl,1(d)) where δ1/2 =

exp(−ls) and ψl,1(d) ≈ cd exp(−ld). Except for a relatively small piece

of G, the two exponentials, exp(−ls) and exp(−ld), almost cancel one

another out, and so the derivative Xi(δ
1/2ψl,1(d)) is very much smaller

than one would naively expect.

A comparison with the analogous calculation on a tree is striking.

δ1/2 exp(−d) ←→ K(x, y) ,

δ1/2 ←→ q(−l(x)−l(y))/2 ,

exp(−d) ←→ q−d(x,y)/2 .
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In the case of the tree the two exponential factors cancel each other

out perfectly (and consequently ∇xK(x, y) = 0) unless x lies directly

above y. In the present case, things are fuzzier, but essentially the

same phenomenon controls the situation.

For T > 1, arc cosh(T ) = log(2T ) + (1/4)T−2 + . . . , the expansion

continuing as a convergent power series in T−2. Applying this to (2),

that is to the exact formula for d(s, n) = d((s, n), e) gives

d(s, n) = log(es + e−s(1 + |n|2)) + O((es + e−s(1 + |n|2))−2) ,

∂sd(s, n) = ∂s log(e
s + e−s(1 + |n|2)) + O((es + e−s(1 + |n|2))−2) ,

es∂ni
d(s, n) = es∂ni

log(es + e−s(1 + |n|2)) + O((es + e−s(1 + |n|2))−2) .

Next, since δ1/2(s, n) = e−ls, since ψl,1(r) = cre−lr +O(e−lr), and since

∂rψl,1(r) = −clre−lr +O(e−lr):

(δ1/2ψl,1)(s, n) = cd(s, n)(e2s + 1 + |n|2)−l +O(δ1/2e−ld) ,

∂s(δ
1/2ψl,1)(s, n) = cd∂s(e

2s + 1 + |n|2)−l +O(δ1/2e−ld)

= cd
−2le2s

(e2s + 1 + |n|2)l+1
+O(δ1/2e−ld) ,

and

es∂ni
(δ1/2ψl,1)(s, n) = cd∂ni

(e2s + 1 + |n|2)−l +O(δ1/2e−ld)

= cd
−2lesni

(e2s + 1 + |n|2)l+1
+O(δ1/2e−ld) .
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Now∫
|∂spt|(x) exp(εt−1/2d(x)) dx

≤ C

∫
|t−3/2 exp(−d2/(4t))d∂s((e2s + 1 + |n|2)−l)| exp(εt−1/2d(x)) dx

+ Ct−1/2

∫
p2t exp(εt

−1/2d(x)) dx

+ t−3/2

∫
exp(−d2/(4t))O(δ1/2e−ld) exp(εt−1/2d(x)) dx

= C(I1 + I2) + I3 .

Similarly ∫
|es∂ni

pt|(x) exp(εt−1/2d(x)) dx ≤ C(I4 + I2) + I3

where

I4 =

∫
|t−3/2 exp(−d2/(4t))des∂ni

((e2s+1+|n|2)−l)| exp(εt−1/2d(x)) dx .

So to finish the proof we need to estimate Ii, i = 1, 2, 3, 4. We can

absorb exp(εt−1/2d(x)) into the Gaussian factor, so

I2 ≤ Ct−1/2

∫
p3t = Ct−1/2 .

We can compare I3 with a linear combination of the pt, using the bound

O(δ1/2e−ld) ≤ C22kp22k for 2k ≤ d(x) < 2k+1.
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This follows from (3), the formula for pt, recalling that all the terms

there are positive. Hence

t−3/2

∫
exp(−d2/(4t))O(δ1/2e−ld) exp(εt−1/2d(x)) dx

= t−3/2

∫
d(x)≥t1/2

+t−3/2

∫
d(x)<t1/2

≤ Ct−1/2

∫
p2t + t−3/2

∫
d(x)<t1/2

O(δ1/2e−ld)

≤ Ct−1/2 + t−3/2

∫
d(x)<1

O(δ1/2e−ld)

+ t−3/2
∑

k≥0,2k<t1/2

∫
2k≤d(x)<2k+1

O(δ1/2e−ld)

≤ C ′t−1/2 +
∑

k≥0,2k<t1/2

C ′′t−3/222k ≤ C ′t−1/2 + C ′′′t−1/2 .

To estimate I1 note that∫
R2l

2le2s

(e2s + 1 + |n|2)l+1
dn =

∫
R2l

2l

(1 + e−2s + |n|2)l+1
dn ≤ C

with constant C independent of s. Hence

I1 =

∫
|t−3/2 exp(−d2/(4t))d∂s((e2s +1+ |n|2)−l)| exp(εt−1/2d(x)) dx

≤ Ct−1

∫
| exp(−d2/(8t))∂s((e2s + 1 + |n|2)−l)| dx

≤ Ct−1

∫
exp(−s2/(8t))

∫
R2l

2le2s

(e2s + 1 + |n|2)l+1
dn ds

≤ C ′t−1

∫
exp(−s2/(8t)) ds = C ′′t−1/2 .

The argument for I4 is similar, and that ends the proof. □

The key estimate 6.2 has now been proved for the case ofG = R⋉RQ,

as needed for the proof of 2.4. We will state our next two results in

greater generality, using that key estimate as one of the hypotheses.

We recall the general set-up. Let G be a Lie group. On G use

left-invariant Haar measure as the basic measure. Work always with
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right-invariant vector fields and differential operators. Assume that

on G there are given vector fields Xi and that the distance d(·, ·) on G

is the distance adapted to those vector fields. Assume also that there

is a given self-adjoint Laplacian L ≥ 0 on G, and that its heat kernel

is pt(·).

Lemma 6.3. Let G, Xi, d, L, and pt be as above. If, as in 6.2, we

have ‖Xipt‖L1 ≤ Ct−1/2 for each i, then there is C ′ such that

‖pt ∗ (δx − δy)‖L1 ≤ C ′t−1/2d(x, y) .

Proof. First, we need an auxiliary formula. Let γ : [0, 1] 7→ G be a

smooth curve. Fix s. Assume that γ′(s) = Y (γ(s)), where Y is a

right-invariant vector field. We have

∂u(pt ∗ δγ(s+u))|u=0 = ∂u(pt ∗ δexp(uY ) ∗ δγ(s))|u=0

so, applying the ∗-operation and using the fact that p∗t = pt,

‖∂u(pt∗δγ(s+u))|u=0‖L1 = ‖∂u(δ(γ(s))−1∗δexp(−uY )∗pt)|u=0‖L1 = ‖Y pt‖L1 .

If γ′(s) =
∑

i ai(s)Xi, then since s was arbitrary,

‖∂s(pt ∗ δγ(s))‖L1 ≤
∑
i

|ai(s)| ‖Xipt‖L1 .

Now, assume that γ joins x and y. Then

‖pt ∗ (δx − δy)‖L1

≤
∫ 1

0

‖∂s(pt ∗ δγ(s))‖L1 ds ≤
∫ 1

0

∑
i

|ai(s)|‖Xipt‖L1 ds

≤ Ct−1/2

(∫ 1

0

∑
i

|ai(s)|2 ds
)1/2

.

Since d(x, y) = infγ(
∫ 1

0

∑
i |ai(s)|2 ds)1/2 we get the claim. □

Theorem 6.4. Let G, Xi, d, L, and pt be as above. Suppose that
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• G satisfies the Calderón–Zygmund condition,

• the conlusion of 6.2 holds.

Then the Riesz transforms XiL
−1/2 are of weak type (1, 1) and bounded

on Lp, 1 < p ≤ 2.

Proof. We are going to use 1.2. We write

Γ(1
2
)XiL

−1/2 =

∫ ∞

0

t−1/2Xipt dt =
∑
n

∫ 2n+1

2n
t−1/2Xipt dt =

∑
n

Kn .

For our next calculation we use the following natural convention.

SupposeK is the operator given by the kernelK(x, y), namely (Kf)(x) =∫
K(x, y)f(y) dy. Then for any measure µ we define

(Kµ)(x) =

∫
K(x, y) dµ(y).

Note, that ((f · g) ∗ δy)(x) = (f ∗ δy)(x)g(xy−1). Now, putting a = 1

and c = 2−1/2

∫
|Kn(x, y)(1 + c−nd(x, y))| dx

≤
∫ 2n+1

2n

∫
|(t−1/2(Xipt) ∗ δy)(x)(1 + c−nd(xy−1))| dx

=

∫ 2n+1

2n
‖(t−1/2(Xipt)(1 + c−nd)) ∗ δy‖L1 dt

≤ C

∫ 2n+1

2n
‖t−1/2(Xipt) exp(εt

−1/2d)‖L1 dt

≤ C ′
∫ 2n+1

2n
t−1 dt ≤ C ′

so the first assumption about Kn in 1.2 holds.



30 WALDEMAR HEBISCH AND TIM STEGER

∫
|Kn(x, y)−Kn(x, z)| dx = ‖Kn(δy − δz)‖L1

≤
∫ 2n+1

2n
‖t−1/2(Xipt)(δy − δz)‖L1 dt

≤
∫ 2n+1

2n
t−1/2‖Xipt/2‖L1 ‖pt/2 ∗ (δy − δz)‖L1 dt

≤ C

∫ 2n+1

2n
t−3/2d(y, z) dt ≤ C ′2−n/2d(y, z) = C ′cnd(y, z)

so the second assumption of 1.2 is also satisfied, ending the proof. □

Proof of 2.4. The result will follow from 1.2. Indeed, by 5.1, G has the

Calderón–Zygmund property. Fix ϕ ∈ C∞
c (R+) such that suppϕ ⊂

[1/2, 2] and
∑

n ϕ(2
nx) = 1 for all x > 0. Put Fn(x) = F (2−nx)ϕ and

Gn(x) = Fn(x) exp(x). We write

F (L) =
∑

Fn(2
nL) =

∑
Gn(2

nL) exp(−2nL)

Now the first assumption of 1.2 follow from 6.1 (applied directly to

Fn) and the second from 6.1 (applied to Gn) and 6.3, which ends the

proof. □

This proof of the spectral multiplier part of 2.4 is also applicable to

any G, Xi, d, L, and pt as above such that

• G satisfies the Calderón–Zygmund condition,

• the conclusion of 6.1 holds,

• the conclusion of 6.3 holds.

7. Final remarks

The method used to obtain the Calderón–Zygmund decomposition

on the tree is inspired by [32] (p. 309, Lemma XVII.3.2) and uses

the same ideas as [17]. Working on trees made ideas simpler, and

made clear which maximal function is relevant for singular integrals (on
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Lie groups there are many natural maximal functions, some bounded,

some unbounded [9],[10]). We use a somewhat different method on Lie

groups, which allows us to handle the case where the roots are of both

signs (for instance, unimodular groups). Both proofs are related to the

construction of Fölner sequences.

For simplicity, we restricted ourselves to rank 1 case. However, our

arguments works the same in a product setting.

The first author can prove that if a (locally compact) group G with

left-invariant Haar measure and right-invariant distance satisfies the

Calderón–Zygmund property, then G is amenable.

In [27] Sjögren proves that X1L
−1/2 is of weak type (1, 1) in the

Q = 1 case, G = R⋉R. The result in our Theorem 2.4 is stronger than

that because it deals also withX0. In [31] Wängeforos extends Sjögren’s

results to AN groups associated to arbitrary rank 1 symmetric spaces.

In [14] Gaudry and Sjögren prove, again for G = R⋉R, that L−1/2X1 is

of weak type (1, 1). That operator is −(X1L
−1/2)∗, so their result gives

p > 2 estimates for X1L
−1/2. Although Gaudry and Sjögren do not

mention trees explicitly, Theorem 3 in [14] does have a strong tree-like

flavor.
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