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Abstract

Let G be a homogeneous Lie group. We prove that for every closed, homogeneous

subset Γ of G∗ which is invariant under the coadjoint action, there exists a regular kernel

P such that P goes to 0 in any representation from Γ and P satisfy Rockland condition

outside Γ. We prove a subelliptic estimate as an application.

Introduction

The purpose of this paper is to construct operators which satisfy Rockland condition

in a given set of representations Γ, and are equal to 0 outside Γ. Rockland operators satisfy

remarkable subelliptic estimates ([11], [7], [9], [10], [14] see also [15]) making them good

substitute for elliptic operators on homogeneous groups. Christ et al. [2] gave a calculus

for pseudodifferential operators on homogeneous groups: the formulas for products and

adjoints and criteria for existence of left or right parametrices (generalizing results of [8]).

However, one should note that great flexibility of classical calculus of pseudodifferential

operators is in large part due to the ease of constructing scalar functions (cutoffs and

partitions of unity). In homogeneous group case we want to pre-specify operators in a

set of representations and still have a regular kernels — this is not straightforward — in

fact not always possible. Our kernels may serve as cutoffs on spectral side (for the spatial

cutoffs one simply uses multiplications with smooth functions). The conditions we impose

seem to be necessary. We present also a simple application in which we derive some Lp

estimates.

Acknowledgements I would like to thank Jean Nourrigat for valuable suggestions.

Preliminaries

We consider a homogeneous group G, that is a nilpotent Lie group equipped with a

family of automorphisms (dilations) {δt}t>0 such that δtδs = δts and for all x ∈ G we have
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δtx→ e if t→ 0. The reader may wish to consult [6] (our definition is a bit more general).

We will identify G with its Lie algebra via the exponential map, and write 0 instead of e.

With our identification all δt became linear maps.

As det(δt) must be a power of t there exists a number Q > 0 such that for all bounded

measurable A ⊂ G

|δtA| = tQ|A|,

this Q is called the homogeneous dimension of G. More general, one can take t to be

discrete, that is consider dilation operator D such that D−kx→ e if k →∞.

A distribution T on G is said to be a kernel of order r ∈ C if T coincides with a locally

finite measure away from the origin, and is homogeneous of degree −r−Q, that is satisfies

(f ◦ δt, T ) = tr(f, T )

for all f ∈ C∞c (G) and t > 0. We extend action of dilation to distributions by the formula

(f, δtT ) = (f ◦ δt, T ).

Then T is a kernel of order r iff for all t > 0

δtT = trT.

A kernel is called regular if it coincides with a smooth function away from the origin.

In the sequel we will identify right-invariant vector fields on G with distributions sup-

ported in {0}. More precisely, there is one to one correspondence between right-invariant

differential operators and distributions supported in {0}. To get the identification we write

(X, f) = Xf(0).

ThenXf = X∗f , and for the left-invariant field X̃ corresponding toX we have X̃f = f∗X.

We also note that dilating a vector field as an element of Lie algebra and as a distribution

gives the same result.

For a unitary representation π of G on a Hilbert space H and a kernel T of order r,

<(r) > 0, the operator π(T ) is defined on the space C∞(π) of smooth vectors for π by

(g, π(T )f) = (φf,g, T )
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where φf,g(x) = (g, π(x)f). Equivalent definition is:

π(T )f = T ∗ ψf (e)

where ψf (x) = π(x)f . This definition also makes sense for uniformly bounded representa-

tions on Banach spaces. If <(r) ≤ 0 the situation is more tricky. For a regular kernel T

one may find h ∈ C∞c (G) such that

Tf =
∑
k

2−rkδ2k(h) ∗ f.

For r = 0 one must have
∫
h = 0 (otherwise T would not be a distribution), and the

Cotlar-Stein lemma shows that the sum defining T is strongly convergent in any unitary

representation of G to a bounded operator.

If <(r) < 0 then T defines unbounded operator on L2(G) (to see that T is densely

defined see [2]). The following lemma shows that the problem is caused by trivial repre-

sentation.

(1.1). Lemma. Let G be a homogeneous nilpotent Lie group, π be nontrivial irreducible

unitary representation of G and h be a Schwartz class function on G. Then for any m

there is a continuous seminorm Cm(·) such that ‖π(δt(h))‖ ≤ Cm(h)(1 + t)−m.

Proof. We fix a scalar product (so also a norm | · |) on the Lie algebra of G. Note,

that there exists α > 0 such that if X is an element of Lie algebra of G then |δt−1(X)| ≤

C(1 + t)−α for t > 1. Let Xj span the Lie algebra of G. Put L =
∑
X2
j . It is known that

L is invertible in π. So

idπ =
∑

π(Xj)(π(Xj)(π(L)−1)) =
∑

π(Xj)Ej

where Ej = π(Xj)π(L)−1 are bounded operators in π. Next, we write

π(δt(h)) = π(δt(h))
∑

π(Xj)Ej =
∑

π(δt(h ∗ δt−1(Xj)))Ej .

Inductively, for any natural l

π(δt(h)) =
∑

π(δt(h ∗ δt−1(Xj1) ∗ . . . ∗ δt−1(Xjl)))Ejl · . . . · Ej1
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so

‖π(δt(h))‖ ≤ Cl max ‖π(δt(h ∗ δt−1(Xj1) ∗ . . . ∗ δt−1(Xjl)))‖ ≤

Cl max ‖h ∗ δt−1(Xj1) ∗ . . . ∗ δt−1(Xjl)‖L1 ≤

Cl maxCh,l|δt−1(Xj1)| · . . . · |δt−1(Xjl)| ≤

C ′(h, l)(1 + t)−αl

which gives the claim.

If we put

Vs = {f ∈ L1
loc(G) ∩ C∞(G− {0}) : ∀φ∈C∞c (G−{0}) lim

t→0
tsφδtf = 0;

uniformly with all derivatives}

then Vs is a locally convex metrizable vector space and Schwartz class functions are dense

in Vs. For 0 > <(r) > −s regular kernels of order r are in Vs and (1.1) shows that π has

(unique) extension form Schwartz class to Vs.

Main Results

Let πl for l ∈ G∗ be the representation associated with l according to Kirilov theory

(cf. [13]).

(2.2). Theorem. Let G be a homogeneous Lie group with dilations {δt}t>0, and Γ be

a closed subset of G∗ such that Ad∗(G)Γ ⊂ Γ, ∀t>0δtΓ ⊂ Γ. For every α ≥ 0 there exists

a regular kernel P of order α such that for all l ∈ Γ we have πl(P ) = 0 and for all l /∈ Γ

the operator πl(P ) is positive definite and injective on its domain. For every 0 > α > −Q

there exists a kernel satisfying conditions above, except for l = 0. Moreover, there is a

Schwartz class function H on G such that for all l ∈ Γ we have πl(H) = 0 and for all l /∈ Γ

the operator πl(H) is positive definite and injective.

Proof. It is enough to prove the theorem only for−Q < α ≤ 0 and small α > 0. Indeed,

taking sufficiently high power of P we get α as large as we wish, without destroying other

properties of P . Moreover, we only need to prove the last claim, that is to construct a
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Schwartz class function H such that for all l ∈ Γ we have πl(H) = 0 and for all l /∈ Γ the

operator πl(H) is positive definite and injective. If we have such a function and α is small

enough, then

P =

∞∫
0

t−αδtH
dt

t

give as a regular kernel of order α having the required properties. Indeed, 0 is in Γ so∫
H = 0. Moreover there is α0 > 0 such that for all 0 < t < 1 we have |δtx| ≤ tα0 |x|. Fix

a φ ∈ C∞c (G). For 0 < t < 1 we have

|(φ, δtH)| = |(φ− φ(0), δtH)| ≤ Ctα0

so if α < α0, then
∞∫

0

t−α(φ, δtH)
dt

t

is absolutely convergent. Changing variables in the integral above one easily checks that

P is homogeneous of degree −α −Q. Smoothness of P outside 0 is clear. Also, if α > 0,

it is easy to check that

π(P ) ⊂
∞∫

0

t−απ(δtH)
dt

t

and that the right hand side defines closed injective operator ( we compute the integral

applying function under the integral to a vector — the domain is the set of all vectors

for which the integral is convergent). For α ≤ 0 we get the same conclusion using (1.1)

(condition α > −Q is used to prove that P is a regular kernel).

We are going to build H. Let us recall that by [1] the set Γ̃ = {πl : l ∈ Γ} is closed in

the Fell topology of the space of representations. Fix p /∈ Γ. Ad∗(G)Γ ⊂ Γ implies πp /∈ Γ̃.

By the definition of Fell topology and density of C∞c (G) in C∗(G), there exists a function

F ∈ C∞c (G) such that

‖πp(F )‖ = 1

and for all l ∈ Γ

‖πl(F )‖ < 1/10.
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Replacing F by F ∗ ∗ F we may assume that F is positive definite. Choose φ ∈ C∞c (R)

such that φ(1) = 1, φ ≥ 0, supp (φ) ⊂ [1/10, 2]. By the spectral theorem the operator

φ(πp(F )) 6= 0

while for all l ∈ Γ

φ(πl(F )) = 0.

Using functional calculus, as for example in [12], we show that there exists a Schwartz class

function R on G such that (as a convolution operator on L2(G)) R = φ(F ). Approximating

φ by polynomials we see that for all l we have

φ(πl(F )) = πl(R).

We also note that the set of π such that π(R) 6= 0 is open (by definition). To summarize,

we constructed R such that for all π ∈ Γ̃

π(R) = 0,

the set UR = {π(R) 6= 0} is open and πp ∈ UR. Since Fell topology has a countable

basis, there exists a sequence {Ri}i∈N such that the complement of Γ̃ is the union of URi .

Therefore, putting S =
∑
aiRi where ai are positive and small enough for S to be a

Schwartz class function we see that for all π in Γ̃

π(S) = 0

and π(S) 6= 0 on the complement of Γ̃.

To finish the proof we need the following lemma:

(2.3). Lemma. If π is an irreducible unitary representation of G, the sequence {gj}j∈N
is dense in G, f ∈ L1(G), π(f) 6= 0, π(f) ≥ 0, the sequence {cj}j∈N is positive and

summable, then

A = π(
∑

cjδg−1
j
fδgj )
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(where δgj means convolution operator with unit mass at gj) is injective.

Proof. Suppose, on the contrary that A is not injective. Then, there exists a nonzero

v such that

(Av, v) =
∑

cj(π(δg−1
j

)π(f)π(δgj )v, v) = 0,

hence for each j

(π(f)1/2π(δgj )v, π(f)1/2π(δgj )v) = 0,

or simply

π(f)1/2π(δgj )v = 0.

Since π is irreducible, closed linear span of π(δgj )v gives the whole space, so π(f)1/2 = 0.

As π(f) is nonzero this gives a contradiction.

Choosing cj = exp(−j − |gj |) and applying (2.3) we conclude that

H =
∑

cjδg−1
j
Sδgj

is a Schwartz class function such that for π in the complement of Γ̃ the operator π(H) is

injective and for π in Γ̃

π(H) = 0

which ends the proof.

Remark If P is a regular kernel of order α, Γ = {l : πl(P ) = 0}, then Ad∗(G)Γ ⊂ Γ,

∀t>0δtΓ ⊂ Γ and Γ is closed. More precisely, if <α < 0, then Γ−{0} is closed in G∗−{0}.

The first condition is clear. Γ is invariant under dilations because P is homogeneous. To

see that Γ is closed assume first that <α > 0. Let φn be an approximate unit in L1

consisting of C∞c functions. φn ∗ P ∈ L1 so Γn = {l : πl(φn ∗ P ) = 0} is closed. As

Γ =
⋂
n Γn we see that Γ is closed. If <α ≤ 0, then we compose P with a kernel R such

that πl(R) is injective on smooth vectors for all l 6= 0 and P ∗ R have order with positive

real part.

An application

As an application of our construction we will give an extension to Lp of a theorem

by J. Nourrigat ([14] Théorème 1.3). We need some setup to state the theorem. Let
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Ω be measure space with measure µ. Assume G act on Ω preserving the measure. Let

φ : G × Ω 7→ C be a (measurable) cocycle for this action, that is |φ| = 1 and for all

g1, g2 ∈ G and all x ∈ Ω

φ(g1g2, x) = φ(g1, x)φ(g2, g
−1
1 x).

Then the formula

π(g)f(x) = φ(g, x)f(g−1x)

gives continuous representation of G which act trough isometries on Lp(Ω), 1 ≤ p < ∞

(on L∞ we get isometries, but the action is only weak-∗ continuous). We say that π is a

cocycle representation. The set of smooth vectors C∞(π) is defined as usual (of course it

may depend on p). Let us note that π(C∞c (G))(L1 ∩L∞) is dense in C∞(π) so we may do

all the calculations on the common core. We also note that the usual construction of πl

gives cocycle representation so we may consider πl as representations on Lp. Let us also

sketch the proof of the following well-known lemma:

(3.4). Lemma. If W is a regular kernel of order α, <(α) = 0 and W gives bounded

operator on L2(G) then W gives bounded operator on Lp(G), 1 < p <∞.

Remark In fact, regular kernel W of order α, <(α) = 0, is always bounded on L2.

Proof. This follows from [3] Chapitre III Théorème (2.4). G equipped with homoge-

neous norm is space of homogeneous type. One may easily verify that in [3] the assumption

that the kernel K is in L2 is only used to prove that the operator T is associated to the

kernel, that is that Tf(x) =
∫
K(x, y)f(y)dy for x not in support of f .

Alternative approach is to regularize W . We fix φ ∈ C∞c (G) such that
∫
φ = 1 and we

write φt = δtφ. One may check that for the regularized kernels Wt = (φt − φt−1) ∗W

assumptions of [3] Chapitre III Théorème (2.4) holds with bounds on independent of

regularization (and limt→∞Wtf = Wf for f in Lp(G), 1 < p < ∞). This approach

shows that transference principle is applicable to W .

(3.5). Theorem. Let G be a homogeneous Lie group with dilations {δt}t>0, and Γ be a

closed subset of G∗ such that Ad∗(G)Γ ⊂ Γ, ∀t>0δtΓ ⊂ Γ. Let π be a cocycle representation

of G such that all irreducible components of π are of the form πl with l ∈ Γ. Let R be
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a regular kernel of order α, <(α) > 0 such that for all l ∈ Γ, l 6= 0 the operator πl(R) is

injective on C∞ vectors of πl. Then for every 1 < p <∞ and every positive integer k and

every kernel A of order β, 0 ≤ <(β) ≤ k<(α) there exists Cp,k,A such that

∀f∈C∞(π)‖π(A)f‖Lp ≤ Cp,k,A(‖f‖Lp + ‖π(R)kf‖Lp).

If R is of order α, 0 ≤ α < Q, then there exists a regular kernel B if order −α such that

∀l∈Γ−{0}∀f∈C∞(πl)πl(B)πl(R)f = f.

Proof. First, assume that k = 1 and β = α. Let S be a regular kernel of order 2<(α)

given by (2.2) . We put

T = S +R∗R.

T is a regular kernel of order 2<(α) and the image of T in any nontrivial representation

of G is injective on smooth vectors. We are going to construct an inverse of T . There

exists injective positive definite operator P on L2(G) such that for s > −Q operator P s

is given by the regular kernel of order s, for small s > 0 P s generates a semigroup of

symmetric probability measures (see [2] Theorem 6.1 and [7]). Choose s0 < Q and m ∈ N

such that s0m = 2<(α). Put V = P s0 and U = V −mT . One easily checks that U is

given by a regular kernel of order 0 and that the image of U in any nontrivial irreducible

unitary representation of G is injective on smooth vectors, so (by [2] Theorem 6.2) U is

left invertible on L2(G) and the inverse is given by a regular kernel U−1. Now the last

claim follows if we notice that U−1V −mR∗ is a regular kernel of order −α for <(α) < Q

and that

π(U−1V −mR∗)π(R)f = π(U−1)π(V −1)mπ(R∗)π(R)f

= π(U−1)π(V −1)mπ(T )f = π(U−1V −mT )f = f.

Also the operator AT−1R∗ is given by the regular kernel W = AU−1V −mR∗ of order 0.

The operator obtained from W is bounded on Lp(G) (by (3.4) ) so by the transference

principle [4] the image of W in π is bounded on Lp(π). Hence

π(A)f = π(A)π(U−1V −mT )f = π(A)π(U−1)π(V −1)mπ(S +R∗R)f
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= π(A)π(U−1)π(V −1)mπ(R∗)π(R)f = π(AU−1V −mR∗)π(R)f = π(W )π(R)f

and

‖π(A)f‖ ≤ ‖π(W )‖‖π(R)f‖.

If <(β) = <(α), then

‖π(A)f‖ ≤ C‖π(P β)f‖ ≤ C‖P β−α‖Lp(G),Lp(G)‖π(Pα)f‖ ≤ C ′‖π(R)f‖.

‖P β−α‖Lp(G),Lp(G) is finite by (3.4) .

If β < α then we note that A(1 + Pα)−1 is a convolution with a L1 function (this

follows from estimates in [5]) so

‖Af‖ ≤ C‖(1 + Pαf‖ ≤ C ′(‖f‖+ ‖Rf‖).

If k > 1 we simply replace R by Rk.
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