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Introduction

Let G be a Lie group, Xj right invariant vector fields on G, which generate

(as a Lie algebra) the Lie algebra of G,

L = −
∑

X2
j .

Then L is called sublaplacian, and it well-known that L is positive definite

and essentially selfadjoint on C∞c (G) ⊂ L2(G), where L2(G) is taken with

respect to a left-invariant Haar measure dg. By the spectral theorem, for any

bounded Borel measurable function F : [0,∞) 7→ C the operator F (L)f =
∞∫
0

F (λ)dE(λ)f is bounded on L2(G). We are interested in the behavior of

F (L) on Lp.

This question has a long history. Classical results for polynomial growth

case are [15], [16], [5], [18], [1], [7], [22] for exponential growth [8], [23], [2],

[3]. Newer results show that connection with growth is more complicated [11],

[19], [12], [10], [9], [4], [6], [13], [20], [14], [21], [17].

In this paper we consider L1(G) boundedness of F (L) for (some)

metabelian G and a distinguished L on G. Of the main interest is that the

group is of exponential growth, and possibly higher rank. Previously positive
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results about higher rank groups where only about Iwasawa type groups. Also,

our groups may be unimodular, so it is the second positive result (after [13])

about unimodular groups, and the first giving a family of examples.

Results

Let G = Rn n Rm, adjoint action is semisimple, L = L0 + L1, L0 lives

on Rn, L1 lives on Rm and is a sum of (squares of) eigenvectors for adjoint

action. More precisely, assume that λj , j = 1, . . . ,m are linear forms on Rn,

ej , j = 1, . . . ,m is the canonical basis of Rm, linear operator A(x) : Rm 7→ Rm

is given by the formula A(x)ej = λj(x)ej and

(x1, y1)(x2, y2) = (x1 + x2, exp(A(−x2))y1 + y2).

The right-invariant vector fields are:

Xj = ∂xj

and

Yj = exp(−λj(x))∂yj .

We assume that

L = −
∑

X2
j −

∑
Y 2
j = L0 + L1.

We can transform general L0 to our form, but for L1 the assumption is some-

what restrictive.

In this paper we identify convolution operators with functions:

exp(−tL)f = exp(−tL) ∗ f.

(1.1). Theorem. If G and L are as above, then there exists C such that

‖ exp(−(1 + is)L)‖L1 ≤ C(1 + |s|3m+n).
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(1.2). Theorem. For every compactly supported F ∈ C3m+n+1 the operator

F (L) is bounded on L1(G).

Theorem (1.2) is a straightforward consequence of (1.1) .

Before the proof of (1.1) we need a lemma about “symbols”. We consider

it as well-known, but the form given below is adjusted to our needs.

(1.3). Lemma. There is C such that if E is a normed space, f : R 7→ E, |f |

is integrable, b ≥ 1,

sup |f̂ | ≤ a,

sup |ω∂ω f̂(ω)| ≤ ab,

sup |ω2∂2ω f̂(ω)| ≤ ab2,

then

|f(x)| ≤ Cab

|x|
.

Remark The lemma remains valid as long as f̂ is reasonably defined

(like f ∈ S(R, E∗)∗, where S(R, E∗) consists of E∗ valued Schwartz class

functions).

Proof: Let φ ∈ C∞(R) be such that φ(x) = 1 for |x| ≤ 1 and φ(x) = 0

for |x| ≥ 2. Fix x0 6= 0 and let r = b
|x0| . Put f̂1(ω) = φ(ω/r)f̂(ω) and

f̂2(ω) = (1− φ(ω/r))f̂(ω). We have

|f1(x)| ≤
∫
|f̂1|dω ≤

2r∫
−2r

adω = 4ar,

and

|x2f2(x)| ≤
∫
|∂2ω f̂2(ω)|dω.
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By the Leibnitz formula

∂2ω f̂2(ω) = (1− φ(ω/r))∂2ω f̂(ω)− 2r−1φ′(ω/r)∂ω f̂(ω) + r−2φ′′(ω/r)f̂(ω)

so∫
|∂2ω f̂2(ω)|dω ≤

∫
|ω|>r

ab2

ω2
dω +

∫
2r>|ω|>r

2Cr−1abω−1dω +

∫
2r>|ω|>r

Cr−2adω

≤ ab2r−1 + 4Cabr−1 + 2Car−1 ≤ C ′ab2r−1.

Now

|f(x0) ≤ |f1(x0)|+ |f2(x0)| ≤ 4ar + C ′ab2r−1|x0|−2

= (4 + C ′)ab|x0|−1 = C ′′ab|x0|−1.
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Proof: of (1.1) . We decompose the regular representation of G using

Fourier transform in y variable. In coordinates

L = −∆x −
∑

exp(−2λj(x))∂2yj

where ∆x =
∑
∂2xj

.

If we denote by Hz the Fourier transform (in y variable) of L at z, then

Hz = −∆x +
∑

z2j exp(−2λj(x)).

<Hz ≥ 0, provided that <zj > =zj , j = 1, . . . ,m, so z 7→ exp(−tHz) is

bounded holomorphic in the area given by the inequalities.

Considering (t + is)Hz we see that exp(−(t + is)Hz) is bounded and

holomorphic as long as <(t + is)z2j ≥ 0, j = 1, . . . ,m. Moreover, we can

estimate the integral kernels

‖ exp(−(2t+ is)Hz)δ0‖L2 ≤ ‖ exp(−(t+ is)Hz)‖‖ exp(−tHz)δ0‖L2 .
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By the Feynmann-Kac formula

‖ exp(−tHz)δ0‖L2 ≤ ‖qt‖L2 = ct−n/4

where qt is ordinary euclidean heat kernel.

Consequently, by the Cauchy integral formula (for real z)

‖∂αz exp(−(t+ is)Hz)δ0‖L2 ≤ Cα|z1|−α1 · . . . · |zm|−αm(1 +
|s|
t

)|α|t−n/4

Applying (1.3) m times we get

‖ exp(−(t+ is)L)(·, y)‖L2 ≤ C ′′(|y1| · . . . · |ym|)−1(1 +
|s|
t

)mt−n/4.

In [14] (as the first step in proof of Theorem (1.1)) we proved that

(1.4)

∫
| exp(−(1 + is)L)(g)|ed(g,0)dg ≤ C exp(Cs2)

where d(x, y) is the optimal control distance associated to L. One easily checks

that

{g : d(g, 0) < r} ⊂ {(x, y) : |x| < r, |y| < cd exp(cdr)}.

To estimate L1 norm we put r = Cs2, c = cdC, Aj = {(x, y) : |x| <

Cs2, |yj | < exp(−mcs2), |yl| < exp(cs2), l 6= j}. Note |Aj | ≤ Cs2n. We have

‖ exp(−(1 + is)L)‖L1 ≤
∫

d(g,0)>r

| exp(−(1 + is)L)(g)|dg

+

∫
|x|<cs2,exp(−mcs2)≤|yj |≤exp(cs2)

| exp(−(1 + is)L)((x, y))|dxdy

+
∑
j

∫
Aj

| exp(−(1 + is)L)|(g)dg

= I∞ + I0 +
∑

Ij .
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For I∞ we use exponential estimate (1.4)

∫
d(g,0)>r

| exp(−(1 + is)L)(g)|dg ≤ e−r
∫
| exp(−(1 + is)L)(g)| exp(d(g, 0))dg

≤ exp(−Cs2)C exp(Cs2) = C.

Next

Ij ≤ |Aj |1/2‖ exp(−(1 + is)L)‖L2 ≤ C|s|n.

Finally

I0 =

∫
exp(−mcs2)≤|yj |≤exp(cs2)

∫
|x|<Cs2

| exp(−(1 + is)L)(x, y)|dxdy

≤
∫

exp(−mcs2)≤|yj |≤exp(cs2)

|{x : |x| < cs2}|1/2‖ exp(−(1 + is)L)(·, y)‖L2dy

≤
∫

exp(−mcs2)≤|yj |≤exp(cs2)

csnC ′′(|y1| · . . . · |ym|)−1(1 + |s|)mdy

≤ C|s|n(1 + |s|)m

2

exp(cs2)∫
exp(−mcs2)

|y1|−1dy1


m

≤ C|s|n(1 + |s|)m((m+ 1)cs2)m ≈ C ′(1 + |s|n+3m).

4

Final remarks

Our goal was to present the idea, so we used simple arguments even

though we got weaker end result. If the estimates are done in a more involved

way one may replace n+ 3m in (1.1) by a smaller number (we checked that

(n+ 3m)/2 is enough), however we expect that in (1.2) it is enough to have

more than n/2+m derivatives in L2, and getting this requires new ideas. Also,

constants in (1.2) grow exponentially with the diameter of support of F . We
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may get polynomial growth, but we would like to have a uniform bound on

‖F (tL)‖L1 .
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