Spectral multipliers on metabelian groups

by Waldemar Hebisch ${ }^{1}$

Institute of Mathematics, Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland.
e-mail: hebisch@math.uni.wroc.pl
www: http://www.math.uni.wroc.pl/~hebisch/

Introduction

Let G be a Lie group, X_{j} right invariant vector fields on G, which generate (as a Lie algebra) the Lie algebra of G,

$$
L=-\sum X_{j}^{2} .
$$

Then L is called sublaplacian, and it well-known that L is positive definite and essentially selfadjoint on $C_{c}^{\infty}(G) \subset L^{2}(G)$, where $L^{2}(G)$ is taken with respect to a left-invariant Haar measure $d g$. By the spectral theorem, for any bounded Borel measurable function $F:[0, \infty) \mapsto \mathbb{C}$ the operator $F(L) f=$ $\int_{0}^{\infty} F(\lambda) d E(\lambda) f$ is bounded on $L^{2}(G)$. We are interested in the behavior of $F(L)$ on L^{p}.

This question has a long history. Classical results for polynomial growth case are [15], [16], [5], [18], [1], [7], [22] for exponential growth [8], [23], [2], [3]. Newer results show that connection with growth is more complicated [11], [19], [12], [10], [9], [4], [6], [13], [20], [14], [21], [17].

In this paper we consider $L^{1}(G)$ boundedness of $F(L)$ for (some) metabelian G and a distinguished L on G. Of the main interest is that the group is of exponential growth, and possibly higher rank. Previously positive

[^0]results about higher rank groups where only about Iwasawa type groups. Also, our groups may be unimodular, so it is the second positive result (after [13]) about unimodular groups, and the first giving a family of examples.

Results

Let $G=\mathbb{R}^{n} \ltimes \mathbb{R}^{m}$, adjoint action is semisimple, $L=L_{0}+L_{1}$, L_{0} lives on \mathbb{R}^{n}, L_{1} lives on \mathbb{R}^{m} and is a sum of (squares of) eigenvectors for adjoint action. More precisely, assume that $\lambda_{j}, j=1, \ldots, m$ are linear forms on \mathbb{R}^{n}, $e_{j}, j=1, \ldots, m$ is the canonical basis of \mathbb{R}^{m}, linear operator $A(x): \mathbb{R}^{m} \mapsto \mathbb{R}^{m}$ is given by the formula $A(x) e_{j}=\lambda_{j}(x) e_{j}$ and

$$
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, \exp \left(A\left(-x_{2}\right)\right) y_{1}+y_{2}\right) .
$$

The right-invariant vector fields are:

$$
X_{j}=\partial_{x_{j}}
$$

and

$$
Y_{j}=\exp \left(-\lambda_{j}(x)\right) \partial_{y_{j}} .
$$

We assume that

$$
L=-\sum X_{j}^{2}-\sum Y_{j}^{2}=L_{0}+L_{1} .
$$

We can transform general L_{0} to our form, but for L_{1} the assumption is somewhat restrictive.

In this paper we identify convolution operators with functions:

$$
\exp (-t L) f=\exp (-t L) * f
$$

(1.1). Theorem. If G and L are as above, then there exists C such that

$$
\|\exp (-(1+i s) L)\|_{L^{1}} \leq C\left(1+|s|^{3 m+n}\right)
$$

(1.2). Theorem. For every compactly supported $F \in C^{3 m+n+1}$ the operator $F(L)$ is bounded on $L^{1}(G)$.

Theorem (1.2) is a straightforward consequence of (1.1).
Before the proof of (1.1) we need a lemma about "symbols". We consider it as well-known, but the form given below is adjusted to our needs.
(1.3). Lemma. There is C such that if E is a normed space, $f: \mathbb{R} \mapsto E,|f|$ is integrable, $b \geq 1$,

$$
\begin{gathered}
\sup |\hat{f}| \leq a \\
\sup \left|\omega \partial_{\omega} \hat{f}(\omega)\right| \leq a b, \\
\sup \left|\omega^{2} \partial_{\omega}^{2} \hat{f}(\omega)\right| \leq a b^{2}
\end{gathered}
$$

then

$$
|f(x)| \leq \frac{C a b}{|x|}
$$

Remark The lemma remains valid as long as \hat{f} is reasonably defined (like $f \in S\left(\mathbb{R}, E^{*}\right)^{*}$, where $S\left(\mathbb{R}, E^{*}\right)$ consists of E^{*} valued Schwartz class functions).

Proof: Let $\phi \in C^{\infty}(\mathbb{R})$ be such that $\phi(x)=1$ for $|x| \leq 1$ and $\phi(x)=0$ for $|x| \geq 2$. Fix $x_{0} \neq 0$ and let $r=\frac{b}{\left|x_{0}\right|}$. Put $\hat{f}_{1}(\omega)=\phi(\omega / r) \hat{f}(\omega)$ and $\hat{f}_{2}(\omega)=(1-\phi(\omega / r)) \hat{f}(\omega)$. We have

$$
\left|f_{1}(x)\right| \leq \int\left|\hat{f}_{1}\right| d \omega \leq \int_{-2 r}^{2 r} a d \omega=4 a r
$$

and

$$
\left|x^{2} f_{2}(x)\right| \leq \int\left|\partial_{\omega}^{2} \hat{f}_{2}(\omega)\right| d \omega .
$$

By the Leibnitz formula

$$
\partial_{\omega}^{2} \hat{f}_{2}(\omega)=(1-\phi(\omega / r)) \partial_{\omega}^{2} \hat{f}(\omega)-2 r^{-1} \phi^{\prime}(\omega / r) \partial_{\omega} \hat{f}(\omega)+r^{-2} \phi^{\prime \prime}(\omega / r) \hat{f}(\omega)
$$

so

$$
\begin{aligned}
\int\left|\partial_{\omega}^{2} \hat{f}_{2}(\omega)\right| d \omega & \leq \int_{|\omega|>r} \frac{a b^{2}}{\omega^{2}} d \omega+\int_{2 r>|\omega|>r} 2 C r^{-1} a b \omega^{-1} d \omega+\int_{2 r>|\omega|>r} C r^{-2} a d \omega \\
& \leq a b^{2} r^{-1}+4 C a b r^{-1}+2 C a r^{-1} \leq C^{\prime} a b^{2} r^{-1}
\end{aligned}
$$

Now

$$
\begin{gathered}
\left.\left|f\left(x_{0}\right) \leq\left|f_{1}\left(x_{0}\right)\right|+\left|f_{2}\left(x_{0}\right)\right| \leq 4 a r+C^{\prime} a b^{2} r^{-1}\right| x_{0}\right|^{-2} \\
=\left(4+C^{\prime}\right) a b\left|x_{0}\right|^{-1}=C^{\prime \prime} a b\left|x_{0}\right|^{-1} .
\end{gathered}
$$

\triangle
Proof: of (1.1) . We decompose the regular representation of G using Fourier transform in y variable. In coordinates

$$
L=-\Delta_{x}-\sum \exp \left(-2 \lambda_{j}(x)\right) \partial_{y_{j}}^{2}
$$

where $\Delta_{x}=\sum \partial_{x_{j}}^{2}$.
If we denote by H_{z} the Fourier transform (in y variable) of L at z, then

$$
H_{z}=-\Delta_{x}+\sum z_{j}^{2} \exp \left(-2 \lambda_{j}(x)\right)
$$

$\Re H_{z} \geq 0$, provided that $\Re z_{j}>\Im z_{j}, j=1, \ldots, m$, so $z \mapsto \exp \left(-t H_{z}\right)$ is bounded holomorphic in the area given by the inequalities.

Considering $(t+i s) H_{z}$ we see that $\exp \left(-(t+i s) H_{z}\right)$ is bounded and holomorphic as long as $\Re(t+i s) z_{j}^{2} \geq 0, j=1, \ldots, m$. Moreover, we can estimate the integral kernels

$$
\left\|\exp \left(-(2 t+i s) H_{z}\right) \delta_{0}\right\|_{L^{2}} \leq\left\|\exp \left(-(t+i s) H_{z}\right)\right\|\left\|\exp \left(-t H_{z}\right) \delta_{0}\right\|_{L^{2}}
$$

By the Feynmann-Kac formula

$$
\left\|\exp \left(-t H_{z}\right) \delta_{0}\right\|_{L^{2}} \leq\left\|q_{t}\right\|_{L^{2}}=c t^{-n / 4}
$$

where q_{t} is ordinary euclidean heat kernel.
Consequently, by the Cauchy integral formula (for real z)

$$
\left\|\partial_{z}^{\alpha} \exp \left(-(t+i s) H_{z}\right) \delta_{0}\right\|_{L^{2}} \leq C_{\alpha}\left|z_{1}\right|^{-\alpha_{1}} \cdot \ldots \cdot\left|z_{m}\right|^{-\alpha_{m}}\left(1+\frac{|s|}{t}\right)^{|\alpha|} t^{-n / 4}
$$

Applying (1.3) m times we get

$$
\|\exp (-(t+i s) L)(\cdot, y)\|_{L^{2}} \leq C^{\prime \prime}\left(\left|y_{1}\right| \cdot \ldots \cdot\left|y_{m}\right|\right)^{-1}\left(1+\frac{|s|}{t}\right)^{m} t^{-n / 4}
$$

In [14] (as the first step in proof of Theorem (1.1)) we proved that

$$
\begin{equation*}
\int|\exp (-(1+i s) L)(g)| e^{d(g, 0)} d g \leq C \exp \left(C s^{2}\right) \tag{1.4}
\end{equation*}
$$

where $d(x, y)$ is the optimal control distance associated to L. One easily checks that

$$
\{g: d(g, 0)<r\} \subset\left\{(x, y):|x|<r,|y|<c_{d} \exp \left(c_{d} r\right)\right\} .
$$

To estimate L^{1} norm we put $r=C s^{2}, c=c_{d} C, A_{j}=\{(x, y):|x|<$ $\left.C s^{2},\left|y_{j}\right|<\exp \left(-m c s^{2}\right),\left|y_{l}\right|<\exp \left(c s^{2}\right), l \neq j\right\}$. Note $\left|A_{j}\right| \leq C s^{2 n}$. We have

$$
\begin{gathered}
\|\exp (-(1+i s) L)\|_{L^{1}} \leq \int_{d(g, 0)>r}|\exp (-(1+i s) L)(g)| d g \\
+\int_{|x|<c s^{2}, \exp \left(-m c s^{2}\right) \leq\left|y_{j}\right| \leq \exp \left(c s^{2}\right)}|\exp (-(1+i s) L)((x, y))| d x d y \\
+\sum_{j} \int_{A_{j}}|\exp (-(1+i s) L)|(g) d g \\
=I_{\infty}+I_{0}+\sum I_{j}
\end{gathered}
$$

For I_{∞} we use exponential estimate (1.4)

$$
\begin{gathered}
\int_{d(g, 0)>r}|\exp (-(1+i s) L)(g)| d g \leq e^{-r} \int|\exp (-(1+i s) L)(g)| \exp (d(g, 0)) d g \\
\leq \exp \left(-C s^{2}\right) C \exp \left(C s^{2}\right)=C
\end{gathered}
$$

Next

$$
I_{j} \leq\left|A_{j}\right|^{1 / 2}\|\exp (-(1+i s) L)\|_{L^{2}} \leq C|s|^{n}
$$

Finally

$$
\begin{gathered}
I_{0}=\int_{\exp \left(-m c s^{2}\right) \leq\left|y_{j}\right| \leq \exp \left(c s^{2}\right)} \int_{|x|<C s^{2}}|\exp (-(1+i s) L)(x, y)| d x d y \\
\leq \int_{\exp \left(-m c s^{2}\right) \leq\left|y_{j}\right| \leq \exp \left(c s^{2}\right)}\left|\left\{x:|x|<c s^{2}\right\}\right|^{1 / 2}\|\exp (-(1+i s) L)(\cdot, y)\|_{L^{2}} d y \\
\leq \int_{\exp \left(-m c s^{2}\right) \leq\left|y_{j}\right| \leq \exp \left(c s^{2}\right)} c s^{n} C^{\prime \prime}\left(\left|y_{1}\right| \cdot \ldots \cdot\left|y_{m}\right|\right)^{-1}(1+|s|)^{m} d y \\
\leq C|s|^{n}(1+|s|)^{m}\left(\int_{2}^{\exp \left(-m c s^{2}\right)}\left|\int_{1}^{\exp \left(c s^{2}\right)}\right| y^{-1} d y_{1}\right)^{m} \\
\leq C|s|^{n}(1+|s|)^{m}\left((m+1) c s^{2}\right)^{m} \approx C^{\prime}\left(1+|s|^{n+3 m}\right)
\end{gathered}
$$

Final remarks

Our goal was to present the idea, so we used simple arguments even though we got weaker end result. If the estimates are done in a more involved way one may replace $n+3 m$ in (1.1) by a smaller number (we checked that $(n+3 m) / 2$ is enough), however we expect that in (1.2) it is enough to have more than $n / 2+m$ derivatives in L^{2}, and getting this requires new ideas. Also, constants in (1.2) grow exponentially with the diameter of support of F. We
may get polynomial growth, but we would like to have a uniform bound on $\|F(t L)\|_{L^{1}}$.

References

[1] G. Alexopoulos, Spectral multipliers on Lie groups of polynomial growth, Proc. AMS 120 (1994), 973-979.
[2] J. Ph. Anker, L^{p} Fourier multipliers on Riemannian symmetric spaces of the non-compact type, Ann. of Math. 132 (1990), 597628.
[3] J. Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), 257297.
[4] F. Astengo, Multipliers for a distinguished Laplacean on solvable extensions of H-type groups, Monatsh. Math. 120 (1995), 179188.
[5] M. Christ, L^{p} bound for spectral multiplier on nilpotent groups, TAMS 328 (1991), 73-81.
[6] M. Christ, D. Müller, On L^{p} spectral multipliers for a solvable Lie group, Geom. Funct. Anal. 6 (1996), 860-876.
[7] M. Christ, Ch. Sogge, The weak type L^{1} convergence of eigenfunction expansions for pseudodifferential operators, Invent. Math. 94 (1988), 421-453.
[8] J. L. Clerc, E. M. Stein, L^{p}-multipliers for non-compact symmetric spaces, Proc. Nat. Acad. Sci. USA (1974), 3911-3912.
[9] M. Cowling, S. Giulini, A. Hulanicki, G. Mauceri, Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth, Studia Math. 111 (1994), 103-121.
[10] W. Hebisch, The subalgebra of $L^{1}(A N)$ generated by the laplacean, Proc. AMS 117 (1993), 547-549.
[11] W. Hebisch, Multiplier theorem on generalized Heisenberg groups, Coll. Math. 65 (1993) 231-239.
[12] W. Hebisch, J. Zienkiewicz, Multiplier theorem on generalized Heisenberg groups II, Coll. Math. 69 (1995) 29-36.
[13] W. Hebisch, Boundedness of L^{1} spectral multipliers for an exponential solvable Lie group, Coll. Math. 73 (1997), 155-164.
[14] W. Hebisch, Spectral multipliers on exponential growth solvable Lie groups, Math. Z. 229 (1998), 435-441.
[15] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960), 93-140.
[16] A. Hulanicki, Subalgebra of $L_{1}(G)$ associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287.
[17] J. Ludwig, D. Müller, Sub-Laplacians of holomorphic L^{p}-type on rank one $A N$-groups and related solvable groups, preprint.
[18] G. Mauceri, S. Meda, Vector-Valued Multipliers on Stratified Groups, Revista Math. Iberoamericana (6), 141-154.
[19] D. Müller, E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. de Math. Pure et Appl. 73 (1994), 413-440.
[20] S. Mustapha, Multiplicateurs spectraux sur certains groupes nonunimodulaires, Harmonic Analysis and Number Theory, CMS Conf. Proceedings, Vol 21, 1997.
[21] S. Mustapha, Multiplicateurs de Mikhlin pour une classe particulière de groupes non-unimodulaires, Ann. Inst. Fourier 48 (1998), 957-966.
[22] A. Sikora, Multiplicateurs associés aux souslaplaciens sur les groupes homogènes, C.R. Acad. Sci. Paris, Série I, 315 (1992), 417-419.
[23] M. Taylor, L^{p}-Estimate on functions of the Laplace operator, Duke Math. J. 58 (1989), 773-793.

[^0]: ${ }^{1}$ Partially supported by KBN grant 2 P03A 05814 and European Commision via TMR network "Harmonic analysis"

