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1. Introduction.

Let Ω be a metric space with the metric d and a Borel measure µ. Let

B(x, r) = {y ∈ Ω : d(x, y) < r}.

We assume that there are constants C, q (volume growth constants of Ω) such that

µ(B(x, sr)) ≤ Cµ(B(x, r))sq

for all s > 1. The existence of such constants is equivalent to the doubling condition, but

here we are interested in getting q as small as possible (at the cost of enlarging C).

The purpose of the paper is to present a reasonably general approach to functional

calculus, multipliers and almost everywhere convergence theorems on Ω. We consider

integral operators with kernels decaying polynomialy away from diagonal. Our methods are

based on L2 estimates obtained from spectral theorem and careful use of weight functions.

The main question is to find sufficient conditions on positive definite operator A on

Ω and on function F such that some of the following holds:

F (A) is bounded on L1

F (A) is bounded on Lp, 1 < p <∞ and of weak type (1,1).

F ∗(A)f = sup
t>0
|F (tA)f | is bounded on Lp, 1 < p <∞ and of weak type (1,1).

The subject has long history. Let us only mention works [15], [5], [17], [21], [18]. Our

topic is closely related to works on Riesz means, for example [16], [23], [3].

In a few classical examples our results are weaker then those previously known. How-

ever, it seems that proofs of, say, multiplier theorems go as follows. One splits the multiplier

into diadically supported pieces. For each piece one gets estimates for dominant term via

some kind of Plancherel formula, which requires a lot of specific knowledge - unavailable

in our setting. Then there is error term estimate - in many cases long and very technical.

Final step is use of covering or decomposition arguments to get estimates for the whole
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multiplier. Our methods seem well suited to handle error term estimates while for the

main term we use essentially a trivial estimate. However, if better estimates for main term

are known, we can use them. It is quite possible that in our general setting the trivial

estimate is the best one. We also give an improved way of gluing estimates for pieces to

get full multiplier theorem — unlike the case of singular integrals we need no smoothness

assumptions (cancelations are provided by the L2 theory).

The main factor affecting our estimates is the volume growth rate. When the work on

this paper begun this was believed to be the correct factor. Recent works [11], [20], [12],

[14] shows that the picture is much more complicated.

2.Banach Algebras

Definition: A continuous function ϕ : Ω× Ω→ R is called submultiplicative if for all

x,y,z

ϕ(x, y) ≥ 1

and

ϕ(x, y)ϕ(y, z) ≥ ϕ(x, z).

Of course if a,b > 0, then ωa = (1 + d)a, ebd, ωae
bd are submultiplicative. Our functional

calculus is based on Banach ∗-algebras whose elements are kernels K, K(x, y) being a

complex number. For a submultiplicative function ϕ we write

‖K‖B(ϕ) = sup
y

∫
|K(x, y)|ϕ(y, x)dµ(x)

K∗(x, y) = K̄(y, x)

|K|B(ϕ) = max{‖K‖B(ϕ), ‖K∗‖B(ϕ)}

and we define the Banach ∗-algebra with unit element by

B(ϕ) = {K : |K|B(ϕ) < +∞}+ CI.

The multiplication is defined by

K1K2(x, y) =

∫
K1(x, s)K2(s, y)dµ(s).

Obviously ∫
|K1K2(x, y)|ϕ(x, y)dµ(x)

≤
∫ ∫

|K1(x, s)K2(s, y)|dµ(s)ϕ(x, y)dµ(x)
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≤
∫ ∫

|K1(x, s)|ϕ(x, s)|K2(s, y)|ϕ(s, y)dµ(s)dµ(x)

≤
∫
‖K1‖B(ϕ)|K2(s, y)|ϕ(s, y)dµ(s)

≤ ‖K1‖B(ϕ)‖K2‖B(ϕ)

for every x. Hence

‖K1K2‖B(ϕ) ≤ ‖K1‖B(ϕ)‖K2‖B(ϕ)

and

|K1K2|B(ϕ) ≤ |K1|B(ϕ)|K2|B(ϕ).

For a given kernel K we are going to estimate the norm of the element KeinK in B(ωa).

We will use the abbreviations

‖K‖a = ‖K‖B(ωa),

|K|a = |K|B(ωa).

(2.1). Theorem. Let a > b ≥ 0 and Ω be as above. For every L there exists constant M

depending only on a, b, L and volume growth constants C, q but independent of Ω, d, µ,

K such that if

K = K∗,

‖K‖a ≤ L,

sup
x
µ(B(x, 1))

∫
|K(x, y)|2dµ(y) ≤ 1,

then for every n

|einK |b ≤M(1 + |n|)κ

where κ = 2[(b+q/2)/(a−b)]((b+ q/2)(1 + 1/(a− b)) + 1).

Proof : Put A = exp(iK), then ‖A‖a = |A|a ≤ exp(L). Let p = q/2 + b, δ = a − b,
r ≥ (n‖A‖a)1/δ (r will be chosen later). Then |A|ar−δ ≤ 1/n.

We put

A0(x, y) =

{
A(x, y) for d(x, y) < er
0 otherwise,

and

Ak(x, y) =

{
A(x, y) for rek ≤ d(x, y) < rek+1

0 otherwise.

If k ≥ 1,

‖Ak‖b ≤ (rek)b−a‖A‖a = C1e
−kδ
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where C1 = r−δ‖A‖a. Also

‖A0‖L2→L2 ≤ 1 + ‖A−A0‖L2→L2 ≤ 1 + r−δ|A|a = C0 ≤ 1 + 1/n.

(2.2). Lemma. Let Ai be as above, α be a multiindex, E a kernel such that

sup
y
µ(B(y, 1))‖E(·, y)‖2L2 ≤M2

and E(x, y) = 0 for d(x, y) > r0. Then

‖
|α|∏
i=1

Aα(i)E‖b ≤MC(r0 + r
∑

eα(i))p exp(−δ
∑

α(i))C
|{i:α(i)>0}|
1 C

|α|
0

and

|
|α|∏
i=1

Aα(i)|b ≤ C|α|
(
r
∑

eα(i)
)p

exp(−δ
∑

α(i))C
|{i:α(i)>0}|
1 C

|α|
0 .

Proof :

‖
|α|∏
i=1

Aα(i)‖L2→L2 ≤
|α|∏
i=1

‖Aα(i)‖L2→L2 ≤ exp(−δ
∑

α(i))C
|{i:α(i)>0}|
1 C

|α|
0

Fix y. Put U = {x : d(x, y) ≤ r0 + er
∑
eα(i)}. We have

‖
|α|∏
i=1

Aα(i)E(·, y)(1 + d(·, y))b‖L1

= ‖χU
|α|∏
i=1

Aα(i)E(·, y)(1 + d(·, y))b‖L1

≤ sup
x∈U

(1 + d(x, y))b‖χU‖L2‖
|α|∏
i=1

Aα(i)E(·, y)‖L2

≤ (1 + r0 + er
∑

eα(i))b|B(r0 + er
∑

eα(i), y)|1/2

×‖
|α|∏
i=1

Aα(i)‖L2→L2‖E(·, y)‖L2

≤ C(r0 + r
∑

eα(i))p exp(−δ
∑

α(i))C
|{i:α(i)>0}|
1 C

|α|
0 M

which gives the first assertion. We prove the second assertion inductively. If α(|α|) > 0,

‖
|α|∏
i=1

Aα(i)‖b ≤ ‖
|α|−1∏
i=1

Aα(i)‖b‖Aα(|α|)‖b
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and we estimate the first factor by the inductive assumption. If α(|α|) = 0,

A0 = I +A′0

where

sup
y
µ(B(y, 1))‖A′0(·, y)‖L2 ≤ sup

y
µ(B(y, 1))‖(A− I)(·, y)‖L2 ≤ C

so

‖
|α|−1∏
i=1

Aα(i)A0‖b ≤ ‖
|α|−1∏
i=1

Aα(i)‖b + ‖
|α|−1∏
i=1

Aα(i)A
′
0‖b

and we estimate the first term by the inductive assumption and the second by the first

assertion of the lemma. Applying ∗ to all the operators in the proof we get not only

estimate for ‖ · ‖b but also for | · |b.
Let us note the following obvious conseqence of (2.2) .

(2.3). Lemma. If |α| ≤ n, then

|
|α|∏
i=1

Aα(i)|b ≤ C|α|p+1
(
remaxα(i)

)p
exp(−δ

∑
α(i))C

|{i:α(i)>0}|
1 .

(2.4). Lemma. For every ε > 0 there exists constant C such that for every b, Ω, f : N 7→
R, n ∈ N and kernel A on Ω if

‖
n∏
i=1

Aα(i)‖b ≤ f(n) exp(−ε
∑

α(i))(1/n)|{i:α(i)>0}|

then

|An|b ≤ Cf(n).

Proof :

|An|b = ‖An‖b ≤
∑
|α|=n

‖
n∏
i=1

Aα(i)‖b

≤ f(n)
∑
|α|=n

exp(−ε
∑

α(i))(1/n)|{i:α(i)>0}|

≤ f(n)(1 + 1/n

∞∑
k=1

e−εk)n

≤ f(n) exp(
∞∑
k=1

e−εk) = Cf(n).
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We expect main part of our kernels to live in the distance of order nr to the diagonal.

In this region we sometimes have another estimate, and the following lemma allows us to

use it efficiently.

(2.5). Lemma. For every ε > 0 there exists constant C such that for every b, Ω, f : N 7→
R, n ∈ N and kernels A and E on Ω if nC1 ≤ 1, E(x, y) = 0 for d(x, y) > nr and

‖
n∏
i=1

Aα(i)E‖b ≤ f(n) exp(−ε
∑

α(i))C
|{i:α(i)>0}|
1

then

sup
y∈Ω

∫
d(x,y)>4nr

|AnE(x, y)|(1 + d(x, y))bdµ(x) ≤ Cf(n)nC1.

Proof : As 4nr > enr + nr we have

sup
y∈Ω

∫
d(x,y)>4nr

|AnE(x, y)|(1 + d(x, y))bdµ(x) ≤
∑
|α|=n
α 6=0

‖
n∏
i=1

Aα(i)E‖b

≤ f(n)
∑
|α|=n
α6=0

C
|{i:α(i)>0}|
1 exp(−ε

∑
α(i))

≤ f(n)nC1

∑
|α|=n

exp(−ε
∑

α(i))(1/n)|{i:α(i)>0}|

≤ Cf(n)nC1.

(2.6). Lemma. Let m be a natural number. For every n and every sequence (ai)
n
i=1 of

nonnegative real numbers there exists subset I of [1, n] ∩N such that |I| ≤ 2m−1 − 1 and

for every subset J of [1, n] ∩N such that |J | ≤ |I|+ 1 and J ∩ I = ∅ we have

m
∑
j∈J

aj ≤
n∑
i=1

ai

Proof : Without any loss of generality we assume that the sequence is nonincreasing

and long enough, otherwise we renumerate it and add zeros.

Next ∑
ai ≥

m−1∑
k=0

2k+1−1∑
2k

ai
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so there exists k ≤ m− 1 such that∑
ai ≥ m

2k+1−1∑
2k

ai.

We take I = [1, 2k − 1] ∩N . Of course the first assertion holds. Let J be as in the second

assertion. Since (ai) is nonincreasing

m
∑
j∈J

aj ≤ m
2k+1−1∑

2k

ai

which ends the proof.

(2.7). Lemma. Let m be a positive natural number, A and Ω be as above. There exists

a constant C such that for all n

‖
n∏
i=1

Aα(i)‖b ≤ Cr(2m−1)pn(2m−1)(p+1) exp((
p

m
− δ)

∑
α(i))C

|{i:α(i)>0}|
1

Proof : Fix α. Take ai = α(i) in Lemma (2.6) and choose subset I according to the

Lemma. We write l = |I| and I = {ij : j = 1, . . . , l}. Put i0 = 0 and il+1 = n+ 1. By the

Lemma l ≤ 2m−1 − 1 and

m
l+1∑
j=1

max
ij−1<i<ij

α(i) ≤
∑

α(i).

Also, by (2.3) ,

‖
ij−1∏

i=ij−1+1

Aα(i)‖b

≤ Cnp+1

(
r exp( max

ij−1<i<ij
α(i))

)p
exp(−δ

∑
ij−1<i<ij

α(i))C
|{i:ij−1<i<ij ,α(i)>0}|
1

Next

‖
n∏
i=1

Aα(i)‖b ≤ ‖
i1−1∏
i=1

Aα(i)‖b
l∏

j=1

∥∥Aα(ij)

∥∥
b

∥∥∥∥∥∥
ij+1−1∏
i=ij+1

Aα(i)

∥∥∥∥∥∥
b


≤ C(np+1rp)2m−1

exp(p

l+1∑
j=1

max
ij−1<i<ij

α(i)) exp(−δ
∑
i

α(i))C
|{α(i)>0}|
1 .

and the lemma follows.

End of the proof of (2.1) . We take m = [p/δ] + 1 and r = (n‖A‖a)1/δ. Then (2.1)

holds by (2.7) and (2.4) .
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(2.8). Theorem. Let a > b, K, Ω satisfy assumptions of (2.1) and

s > 2[(b+q/2)/(a−b)]((b+ q/2)(1 + 1/(a− b)) + 1) + 1/2.

There exists C such that for all f ∈ H(s)

|f(K)|b ≤ C‖f‖H(s).

Proof : We may assume that ‖K‖L2 ≤ 1 (if not we replace K by K/‖K‖L2 and adjust

f). Therefore spK ⊂ [−1, 1] and f(K) does not depend on the values of f outside [−1, 1].

Putting h = φf where φ ∈ C∞c ([−2, 2]) and φ = 1 on [−1, 1] we have f(K) = h(K). Next

h(K) =
∑

ĥ(n)einK

and

|h(K)|b ≤
∑
|ĥ(n)||einK |b ≤M

∑
|ĥ(n)|(1 + |n|)κ ≤

∑
|ĥ(n)|(1 + |n|)s(1 + |n|)κ−s

≤M‖h‖H(s)(
∑

(1 + |n|)2(κ−s))1/2 ≤ C‖f‖H(s)

where κ and M are as in (2.1) .

(2.9). Lemma. Let I and J be closed intervals such that I ⊂ Int J ⊂ J ⊂ (−π, π). Let

B(s) be C(s) or H(s), f ∈ B(s0), supp f ⊂ I, l > 0. There exist functions fj , j = 0, 1, . . .

satisfying the following conditions

f =
∑

fj

supp fj ⊂ J

|f̂j(k)| ≤ C(s0, I, J, l)2
−s0j(1 + max(0, |k| − 2j))−l−3‖f‖B(s0)

‖fj‖B(0) ≤ C(s0, I, J, l)2
−s0j‖f‖B(s0)

where C(s0, I, J, l) depend only on s0, I, J , l.

We choose smooth functions ϕ, ψ such that suppϕ ⊂ J , ϕ|I = 1, ψ = 1 on [− 1
2 ,

1
2 ],

suppψ ⊂ [−1, 1] and we put

hj(x) =

{∑
ψ(k)f̂(k)eikx for j = 0,∑
[ψ(2−jk)− ψ(2−j+1k)]f̂(k)eikx otherwise,

fj = ϕhj

Third condition holds because

f̂j(k) =
∑
r

ϕ̂(r)ĥj(k − r)
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and |ϕ̂(k)| ≤ C(1 + |k|)−l−4.

Remark. (2.9) is valid for very general scales of Banach spaces. In particular it is

valid for Besov and Tribel-Lizorkin spaces.

(2.10). Theorem. For every b ≥ 0, s > (b+ q/2)(1 + 2/(a− b)), a > 2b+ q/2 there exist

C such that

|f(K)K|b ≤ C‖f‖C(s).

Proof : Without any loss of generality we assume that supp f ⊂ (−π, π). We de-

compose f as in (2.9) (with l > s). Fix k. We put n = 2k+2, r = (n2‖A‖a)(1/(a−b)),

p = b+ q/2,

E(x, y) =
{
K(x, y) for d(x, y) < nr
0 otherwise.

Observe that ∫
d(x,y)>4nr

|fk(K)K(x, y)|(1 + d(x, y))bdµ(y)

≤
∫

d(x,y)>4nr

|fk(K)E(x, y)|(1 + d(x, y))bdµ(y)

+‖fk(K)‖b
∫

d(x,y)>nr

|K(x, y)|(1 + d(x, y))bdµ(y) = I1 + ‖fk(K)‖bI2

As I2 ≤ Cn−2 and p < δ, we get estimate for the second term as in (2.8) . Also

I1 ≤
∑

|j|≤2k+2

|f̂k(j)|
∫

d(x,y)>4nr

|AjE(x, y)|(1 + d(x, y))bdµ(y) +
∑

|j|>2k+2

|f̂k(j)| ‖Aj‖b‖K‖b

and by (2.2) , (2.5) and (2.9) (note that C1 ≤ 1
n2 ), this is

≤ Cn−s(nr)p

Next, putting U = {x : d(x, y) ≤ 4nr}, we have∫
U

|fk(K)K(x, y)|(1 + d(x, y))bdµ(x)

≤ ‖χU‖L2 sup
x∈U

(1 + d(x, y))b‖fk(K)K(·, y)‖L2

≤ ‖fk‖L∞ sup
x∈U

(1 + d(x, y))b‖χU‖L2‖K(·, y)‖L2

≤ Cn−s(nr)p.
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Gathering the estimates above we get

‖fk(K)K‖b ≤ Cn−s(nr)p ≤ C ′2−kε

for some ε > 0, which of course implies our claim.

(2.11). Theorem. Let I and J be closed intervals such that I ⊂ Int J ⊂ J . Assume

a > 2b+q/2. If there exist κ, γ, χ such that κ ≥ 1, b ≥ 0, s > (b+q/2)(1+κ/(a−b))+2−κ,

s > (b+ γ/2)(1 +κ/(a− b)), s > χ+ b(1 +κ/(a− b)) and for every f such that supp f ⊂ J∫
d(x,y)<r

|f(K)|(x, y)dx ≤M(rγ/2‖f‖L2 + ‖f‖H(χ)),

then for every f such that supp f ⊂ I

‖f(K)K‖b ≤M ′‖f‖H(s).

Proof :The proof is similar to the proof of (2.10) . We choose r = (nκ‖A‖a)(1/(a−b))

to get C1 = n−κ, also l in (2.9) is made large enough. Then we use the assumption to

estimate integral over the set U :∫
U

|fk(K)K(x, y)|(1 + d(x, y))bdµ(x)

≤ (1 + 4(nr)b)

∫
U

|fk(K)K(x, y)|dµ(x)

≤M(1 + 4(nr)b)((nr)γ/2‖xfk‖L2 + ‖xfk‖H(χ))

≤ C(nr)b+γ/2n−s + C1(nr)b‖fk‖χ/(χ+b(1+κ/(a−b)))
H(χ+b(1+κ/(a−b))) ‖fk‖

b(1+κ/(a−b))/(χ+b(1+κ/(a−b)))
L2

≤ C(nr)b+γ/2n−s + C2(nr)b(n−s)b(1+κ/(a−b))/(χ+b(1+κ/(a−b))) ≤ C32−kε

3. Multiplier theorems.

Let A be a non-negative self-adjoint densely defined operator on L2(M,µ). Let E be

the spectral measure of A. By the spectral theorem, we write

Af =

∫
λdE(λ)f

and

e−tAf =

∫
e−λdE(λ)f.

We assume that

e−tAf(x) =

∫
e−tA(x, y)f(y)dµ(y)
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where the kernels e−tA(x, y) satisfy the following estimates :

there exist positive numbers a, m, α and C such that for all t

sup
y

∫
|e−tA(x, y)|(1 + t−1/md(x, y))adµ(x) ≤ C

sup
y
µ(B(y, t1/m))

∫
|e−tA(x, y)|2dµ(x) ≤ C

(3.1). Theorem. Assume that the conditions above are satisfied and that

sup
y,z

∫
|e−tA(x, y)− e−tA(x, z)|dµ(x) ≤ Ct−α/md(y, z)α.

If F ∈ H(s)loc,

s > 2[q/(2a)]((q/2)(1 + 1/a) + 1) + 1/2

and for a non-zero ϕ ∈ C∞c (R+)

sup
t>0
‖Ftϕ‖H(s) ≤M

where

Ft(λ) = F (tλ),

then F (A) =
∫
F (λ)dE(λ) is of weak type (1,1) and bounded on Lp(M), 1 < p <∞.

(3.2). Lemma. If for some constants R < 1, M , a > 0, α > 0, a family of kernels

{Kn}∞n=0 satisfies

‖Kn‖B((1+Rnd)a) ≤M∫
|Kn(x, y)−Kn(x, z)|dµ(x) ≤MRnαd(y, z)α,

then for some C depending only of R, a, α

sup
z,y

∫
d(x,y)>2d(y,z)

∑
n

|Kn(x, y)−Kn(x, z)|dµ(x) ≤MC

Proof : Fix y and z. Let

S = {x : d(x, y) > 2d(y, z)}.

Now ∫
S

|Kn(x, y)−Kn(x, z)|dµ(x)

≤
∫
S

|Kn(x, y)|dµ(x) +

∫
S

|Kn(x, z)|dµ(x) ≤ 2MR−nad(y, z)−a.
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Then ∑∫
S

|Kn(x, y)−Kn(x, z)|dµ(x)

≤
∑

min(MRnαd(y, z)α, 2MR−nad(y, z)−a)

≤ 2M(1−Ra)−1 +M(1−Rα)−1 ≤ CM.

Proof of (3.1) : First note that if µ(M) = ∞ then second assumption about e−tA

implies that the spectral measure of A has no atom at 0. If µ(M) <∞ then this assumption

implies that the spectral projector corresponding to 0 is bounded on L1 ( beeing bounded

from L1 to L2 ⊂ L1) and hence by interpolation and duality on all Lp, 1 ≤ p ≤ ∞. In any

case we need to handle only (strictly) positive part of the spectrum. Choose ϕ ∈ C∞c (R+)

such that
∑
ϕ(2mnλ) = 1 for λ > 0. Let

Fn(λ) = ϕ(λ)F (2−mnλ),

Gn(λ) = Fn(− log(λ)),

Hn(λ) = Fn(− log(λ))λ−1,

en = e−2mnA,

Kn = Gn(en) = Hn(en)en.

We have

F (A) =
∑

Fn(2mnA) =
∑

Kn.

By the assumption,

sup
y

∫
|en(x, y)|(1 + 2−nd(x, y))adµ(x) ≤ C

sup
y
µ(B(y, 2n))

∫
|en(x, y)|2dµ(x) ≤ C

and of course,

‖Gn‖H(s) ≤ C ′

therefore replacing d by 2−nd we may apply (2.8) to get

‖Kn‖B((1+2−nd)ε) ≤M

for sufficiently small ε > 0. Moreover

|Kn(x, y)−Kn(x, z)| ≤
∫
|Hn(en)(x, s)||en(s, y)− en(s, z)|dµ(s)
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hence∫
|Kn(x, y)−Kn(x, z)|dµ(x) ≤ ‖Hn(en)‖0

∫
|en(s, y)− en(s, z)|dµ(s) ≤M2−αnd(y, z)α

This means that assumptions of (3.2) are satisfied.

Now, we use the general theory of Calderón-Zygmund operators (see for example

Coifman-Weiss [4]).

(3.3). Theorem. If K =
∑
Kk, K is bounded on Lp, p > 1, KkΨj = 0 for k > j,

KkΨj = Kk for k < j and ∫
|Kk(x, y)|(1 + 2−kd(x, y))ε ≤ C

|Ψk(x, y)| ≤ C(1 + 2−kd(x, y))−q−ε(B(x, 2k)−1 +B(y, 2k)−1)

then K is of weak type 1-1.

Put

ρt(x, y) = (1 + t−1d(x, y))−q−ε(µ(B(x, t))−1 + µ(B(y, t))−1),

M̃f(x) = sup
t>0

∫
ρt(x, y)|f(y)|dy.

(3.4). Lemma.

M̃f(x) ≤ CMf(x).

In particular M̃ is bounded on Lp, for all 1 < p ≤ ∞.

Proof :There exists C such that

µ(B(x, 2d(x, y))) ≤ C(1 + t−1d(x, y))qµ(B(x, t)),

µ(B(x, 2d(x, y))) ≤ µ(B(y, 4d(x, y))) ≤ C(1 + t−1d(x, y))qµ(B(y, t))

for all x, y, t > 0. Hence

ρt(x, y) ≤ C ′(µ(B(x,max(t, 2d(x, y)))))−1(1 + t−1d(x, y))−ε.

Fix t. We have∫
ρt(x, y)|f(y)|dy ≤ C ′′

∞∑
k=0

2−εµ(B(x, 2kt))−1

∫
B(x,2kt)

|f(y)|dy

≤ C ′′′Mf(x).

If f is an arbitrary L1 function and λ is a positive real number, then either µ(M) ≤
‖f‖L1/λ and

µ({x : |Kf(x)| > λ}) ≤ µ(M) ≤ ‖f‖L1/λ
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or we apply to f the Calderon-Zygmund decomposition at height λ (see for example

Coifman-Weiss [4], Chapitre 3, Theoreme (2.2) ) and obtain balls B(xi, ri) such that

putting P =
⋃
B(xi, ri) we have

‖f
∣∣
M−P ‖L∞ ≤ Cλ∫

B(xi,ri)

|f | ≤ Cλµ(B(xi, ri))

∑
µ(B(xi, ri)) ≤ C‖f‖L1/λ

and every x ∈M belongs to at most C different B(xi, ri).

Put Qi = B(xi, ri), Q
∗
i = B(xi, 2ri), Si = Qi − ∪j<iQj , fi = χSif , ki = [log2(ri)].

(3.5). Lemma. There exists C such that for all i∑
n

∫
(Q∗

i
)c

|Kn(1−Ψki)fi|(x)dx ≤ C‖fi‖L1 .

Proof : ∫
(Q∗

i
)c

|Knfi|(x)dx ≤ ‖fi‖L1 sup
y∈Qi

∫
(Q∗

i
)c

|Kn(x, y)|dx

≤ ‖fi‖L1 sup
y

∫
d(x,y)>2ki−1

|Kn(x, y)|dx

≤ 2ε(n−ki+1)‖fi‖L1 sup
y

∫
d(x,y)>2ki−1

|Kn(x, y)|(1 + 2−nd(x, y))εdx

≤ C2ε(n−ki)‖fi‖L1

By assumption, Kn(1−Ψki) = 0 for n > ki and Kn(1−Ψki) = Kn for n < ki. Hence∑
n

∫
(Q∗

i
)c

|Kn(1−Ψki)fi|(x)dx ≤ ‖Kki(1−Ψki)fi‖L1 +
∑
n<ki

∫
(Q∗

i
)c

|Knfi|(x)dx

≤ C‖fi‖L1

∑
n≤ki

2ε(n−ki)

≤ C‖fi‖L1 .

(3.6). Lemma. For every 1 ≤ p <∞ there exist Cp such that

‖
∑

Ψkifi‖
p
Lp ≤ Cpλ

p−1‖f‖L1 .
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Proof :Put τi = ρ2ki . It is easy to check (using doubling condition) that

sup
y∈Qi

τi(x, y) ≤ C inf
y∈Qi

τi(x, y)

with C uniform in x and i. Fix i and x and choose y0 ∈ Qi.

|Ψkifi| ≤
∫
τi|fi|(y)dµ(y)

≤ Cλµ(Qi)τi(x, y0)

≤ C ′λτiχQi .

Let r = p/(p− 1). If h ∈ Lr, h ≥ 0, then

|(h, τiχQi)| = |(τih, χQi)| ≤ (M̃h, χQi).

By (3.4) ,

(h,
∑
|Ψkifi|) ≤ C(M̃h,

∑
λχQi) ≤ C‖h‖Lr‖

∑
λχQi‖Lp

By properties of Calderón-Zygmund decomposition ‖
∑
λχQi‖

p
Lp ≤ C

∑
λpµ(Qi) ≤

C ′λp−1‖f‖L1 , which ends the proof of (3.6) .

Let

g = f −
∑
i

(1−Ψki)fi = f −
∑
i

fi +
∑
i

Ψkifi

so

Kf = K(
∑
i

(1−Ψki)fi + g) =
∑
n

∑
i

Kn(1−Ψki)fi +Kg

We have

‖g‖pLp ≤ p(‖f −
∑
i

fi‖pLp + ‖
∑
i

Ψkifi‖
p
Lp)

≤ p(‖f −
∑
i

fi‖p−1
L∞ ‖f −

∑
i

fi‖L1 + Cλp−1‖f‖L1) ≤ C ′λp−1‖f‖L1 .

Put E = ∪iQ∗i . By (3.5) ,∫
M−E

|
∑
n

∑
i

Kn(1−Ψki)fi|(x)dx ≤
∑
n

∑
i

∫
(Q∗

i
)c

|Kn(1−Ψki)fi|(y)dy

≤
∑
i

C‖fi‖L1 ≤ C ′‖f‖L1 .

Finally

|{|Kf | > λ}| ≤ |{|Kg| > λ/2}|+ |{|
∑
n

∑
i

Kn(1−Ψki)fi| > λ/2}|

15



≤ (2‖Kg‖Lp)p

λp
+ |E|+

2
∫

M−E
|
∑
n

∑
iKn(1−Ψki)fi|(x)dx

λ

≤ C(
λp−1‖f‖L1

λp
+
‖f‖L1

λ
) ≤ 2Cλ−1‖f‖L1

which ends the proof of (3.3) .

(3.7). Theorem. If a > q, l > (1 + 2/a)q/2 + 1, p > 1 and for a non-zero ϕ ∈ C∞c (R+),

∞∫
0

t−1‖ϕδ(t)F‖Wp
l
dt <∞,

then

F ∗f = sup
t>0
|δ(t)F (A)f |

is of weak type (1,1) and bounded on Lp for 1 < p ≤ ∞.

Remark. The index l in (3.7) can not be essentially lowered. This contrasts with

homogeneous multipliers on Rn, (see [22]) where one can take l close to (n+ 1)/2 (or use

derivatives in L2 and l close to n/2). To see this let A be operator on C∞c (R2) defined by

the formula

Âf = ψf̂

where ˆ denotes the Fourier transform. Assume that ψ is homogeneous with respect to

anisotropic dilations, that is ψ(tx, t2y) = tkψ(x, y) and that the level set {(x, y) : ψ(x, y) =

1} contains an interval I not parallel to any of the coordinate axes. Let supp f̂ be contained

in small neighbourhood of a point x in I. Take F (λ) = (1− λ)(1−ε). Then

(F (A)f)(x, y) ≈ (x2 + y2)−1+ε/2

when (x, y) lies in a bounded distance from direction normal to I and F (A)f is small

outside this set. If we take F (tA)f then we get similar estimate but the set where F (tA)f

is large changes. More precise, it is obtained applying anisotropic dilation to the set where

F (A)f is large. Anisotropic dilations act transitively on directions different from axes, so

F ∗(A)f(x, y) ≈ (x2 + y2)−1+ε/2

on a cone with nonempty interior. But then clearly F ∗(A) is not of weak type 1-1. If k

is large then A satisfies our estimates with large a. One can modify this example to get

differential A, (then level set must be tangent of high order to I).

(3.8). Theorem. If a > q, s > (1 + 2/a)q/2 and for a non-zero ϕ ∈ C∞c (R+) and a
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constant C

sup
t>0
‖ϕδ(t)F‖C(s) ≤ C,

then F (A) is of weak type (1, 1) and bounded on Lp for 1 < p <∞.

Remark. With other assumptions as in (3.8) , if

∞∫
0

t−1‖ϕδ(t)F‖C(s)dt <∞,

then F (A) is bounded on L1.

Remark. (3.8) applied to the sublaplacean on Lie group of polynomial growth gives

result essentially equivalent to that of G. Aleksopoulos [1].

(3.9). Lemma. There exists C such that for all x, y and t

|etA(x, y)| ≤ Cµ(B(y, t1/m))−1.

Proof. We are going to prove that for all ε > q/2 there exists C such that

|etA(x, y)| ≤ C(1 + t−1/md(x, y))−(a−ε)(µ(B(x, t1/m))µ(B(y, t1/m)))−1/2

for all x, y and t. This easily implies our claim.

The estimate above is trivially true for ε = a. We have (using Schwartz inequality)

|e2tA(x, y)|(1 + t−1/md(x, y))(a−ε)(µ(B(x, t1/m))µ(B(y, t1/m)))1/2 =∫
|etA(x, s)etA(s, y)|(µ(B(x, t1/m))µ(B(y, t1/m)))1/2(1 + t−1/md(x, y))(a−ε)ds

≤ sup
y
µ(B(y, t1/m))

∫
|etA(s, y)|2(1 + t−1/md(s, y))2(a−ε)ds

≤ sup
y

∫
|etA(s, y)|(1 + t−1/md(s, y))ads

× sup
s,y

µ(B(y, t1/m))|etA(s, y)|(1 + t−1/md(x, y))(a−2ε)

≤ C sup
s,y

(µ(B(x, t1/m))µ(B(y, t1/m)))1/2|etA(s, y)|(1 + t−1/md(x, y))(a−2ε+q/2)

Repeating this we can get ε− q/2 arbitrarily small and thus (3.9) is proved.

We fix ϕ and ψ such that ϕ,ψ are in C∞(R), suppϕ ⊂ [2−m, 2m/2], (∀x > 0)∑
ϕ(2mkx) = 1, and suppψ ⊂ [−1, 1], with ψ(x) = 1 for x ∈ [0, 2−m/2]. Let

ϕk(λ) = ϕ(2mkλ),
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ψk(λ) = ψ(2mkλ),

Ψk = ψk(A),

Fk(λ) = ϕk(λ)F (λ),

Gk(λ) = Fk(−2−mk log(λ))λ−1,

ek = e−2mkA,

Wk = ψk(−2−mk log(λ))λ−2,

Kk = Gk(ek)ek.

We have

F (A) =
∑

Fk(A) =
∑

Gk(ek)ek =
∑

Kk.

By the assumption,

sup
y

∫
|ek(x, y)|(1 + 2−kd(x, y))adµ(x) ≤ C

sup
y
µ(B(y, 2k))

∫
|ek(x, y)|2dµ(x) ≤ C

and of course,

‖Gk‖C(l) ≤ C ′

therefore replacing d by 2−kd we may apply (2.10) to get

‖Kk‖B((1+2−kd)ε) ≤M

for sufficiently small ε > 0.

Also

ψk(A) = Wk(ek)e2
k

and for any s

‖Wk‖H(s) ≤ Cs

therefore replacing d by 2−kd we may apply (2.8) to get∫
|Wk(ek)|(x, y)(1 + 2−kd(x, y))a−ε ≤ C

By (3.9) (and symmetry) we get

sup
y
|Wk(ek)ek|(x, y) ≤ µ(B(x, 2k))−1

Next

|ψk(A)|(x, y) ≤
∫
|Wk(ek)ek|(x, s)|ek|(s, y)ds
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≤
∫

d(x,s)≥d(x,y)/2

|Wk(ek)ek|(x, s)|ek|(s, y)ds+

∫
d(y,s)≥d(x,y)/2

|Wk(ek)ek|(x, s)|ek|(s, y)ds

≤ sup
s
|ek|(s, y)

∫
d(x,s)≥d(x,y)/2

|Wk(ek)ek|(x, s)ds

+ sup
s
|Wk(ek)ek|(x, s)

∫
d(y,s)≥d(x,y)/2

|ek|(s, y)ds

≤ C(1 + t−1/md(x, y))−(a−ε)(µ(B(x, t1/m))−1 + µ(B(y, t1/m))−1)

In other words

|ψk(A)|(x, y) ≤ C(1 + 2−kd(x, y))−(a−ε)(µ(B(x, 2−k))−1 + µ(B(y, 2−k))−1)

which is the second assumption in (3.3) . This ends the proof of (3.8) .

The following lemma is all what is needed to end the proof of (3.7) .

(3.10). Lemma.∫
sup
t>0
|F (tA)ϕk(A)|(x, y)(1 + 2−kd(x, y))εdx ≤ C

∞∫
0

t−1‖ϕδ(t)F‖Wp
l
dt <∞.

Proof :We have ∫
sup
t>0
|F (tA)ϕk(A)|(x, y)(1 + 2−kd(x, y))εdx

≤
∑
j

∫
sup
t>0
|Fj(tA)ϕk(A)|(x, y)(1 + 2−kd(x, y))εdx

and ∑
j

‖δ(2−mj)Fj‖Wp
l
≤ C

∞∫
0

t−1‖ϕδ(t)F‖Wp
l
dt

so it is enough to show that∫
sup
t>0
|Fj(tA)ϕk(A)|(x, y)(1 + 2−kd(x, y))εdx ≤ C‖δ(2−mj)Fj‖Wp

l
.

Without any loss of generality we may assume that k = 0 and j = 0. Indeed, otherwise

we replace d by 2−kd and F by δ(2−mj)F . We write

en = exp(ine−A)e−A,

Ht(λ) = (ϕ0)(− log(λ))F0(−t log(λ))/λ.
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We have

F0(tA)ϕ(A) = Ht(e
−A)e−A =

∑
n

Ĥt(n)en

and Ht = 0 for t /∈ [2−2m, 22m]. It follows

sup
t>0
|ϕ(A)F0(tA)|(x, y) ≤

∑
n

sup
22m≥t>2−2m

|Ĥt(k)||en(x, y)|

and ∫
sup
t>0
|F0(tA)ϕ(A)|(x, y)(1 + 2−kd(x, y))εdx

≤
∑
n

sup
22m≥t>2−2m

|Ĥt(n)|
∫
|en(x, y)|(1 + 2−kd(x, y))εdx

≤ C‖F0‖Wp
l

∑
n

(1 + |n|)−l‖en‖ε

≤ C ′‖F0‖Wp
l

∑
n

(1 + |n|)−l(1 + |n|)(1+2/(a−ε))q/2 ≤ C ′′‖F0‖Wp
l
.

Let M be a homogeneous group (cf. [7]) of homogeneous dimension Q, that is a Lie

group equipped with one-parameter family {δt}t>0 of automorphisms such that for all

x ∈M

lim
t→0

δtx = e

where e is the neutral element of M and for every compact set A ⊂M

µ(δt(A)) = tQµ(A)

where µ is the Haar measure. Such a Q is not unique — as additional normalization

we require all eigenvalues of Deδt to be at most t for t < 1 and to have t as one of

the eigenvalues. We assume that A is a left-invariant hypoelliptic differential operator,

homogeneous of degree m > 0, that is (for f in the domain of A)

A(f ◦ δt) = tm(Af) ◦ δt.

Such an A is usually called Rockland operator. Since A is left-invariant we have

F (A)f = f ∗HF

where HF is a distribution on M called the kernel of F (A). In our setting we have a kind

of Plancherel formula:

‖HF ‖L2 = c

∫
|F (A)|2(x)x−1+Q/mdx.
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To see this note that as ‖HF ‖L2 = H|F |2(e) the formula above is equivalent to

HF (e) = c

∫
F (A)(x)x−1+Q/mdx.

For F (x) = e−x both sides are finite (and nonzero) so one can choose c to have equality.

Then homogeneity shows that the set of F for which equality holds is closed under dilations.

Thus the equality holds for linear combinations of exponentials - that is on a set dense in

L1(x−1+Q/mdx), which shows the formula. We fix a riemmanian metric d on G. Note that

it can happen that q (which describes growth of balls for riemmanian metric) is smaller

then Q.

(3.11). Theorem. If A and G are as above, s > q/2 and for a non-zero ϕ ∈ C∞c (R+)

and a constant C

sup
t>0
‖ϕδ(t)F‖H(s) ≤ C,

then F (A) is of weak type (1, 1) and bounded on Lp for 1 < p <∞.

Remark. If A is a homogeneous sublaplacean this theorem reduces to the theorem of

M. Christ [2] and G. Mauceri and S. Meda [19]. If A is nondifferential then possible values

of a are bounded and we must assume that a > q and s > (1 + 2/a)q/2. J. Dziubański [6]

showed how to apply results like (3.11) for some nondifferential A when a is small to get

s = q/2 + ε with arbitrarily small ε > 0.

Proof :First choose a so that a > Q (hence a > q), s > (1 + 2/a)q/2. Then we

proceed as in the proof of (3.8) . The difference is that instead of 2−kd we use dk(x, y) =

d(δ(2−k)x, δ(2−k)y) where d is some fixed left-invariant riemmanian metric on G. Also

thanks to the Plancherel formula we may apply (2.11) instead of (2.10) . Indeed, we

should estimate ‖Kk‖B((1+dk)ε) (for Ψk we directly re-use the proof of (3.8) ). Using

dilations, we reduce to problem to the estimate for ‖K0‖B((1+d)ε). We write f̃(x) = f(e−x)

so f(e0) = f̃(A) (and we assume that f have support in some fixed interval I contained in

positive reals — we want to be away from 0). Then∫
d(x,e)<r

|f(e0)|(x, e)dx ≤ |{x : d(x, e) < r}|1/2‖f(e0)‖L2

≤ Crq/2‖f̃(A)‖L2 = C1r
q/2(

∫
|f̃(x)|2x−1+Q/mdx)1/2

≤ C2r
q/2‖f̃‖L2 ≤ C3r

q/2‖f‖L2 .

Since our kernels are left-invariant the estimate above means that assumptinons of (2.11)
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are satisfied with κ = 2, γ = q, χ = 0 so we get uniform bound on ‖Kk‖B((1+dk)ε).

To finish the proof choose a homogeneous (dilation invariant) and left-invariant metric

ρ on G (see for example [13]). We have

(1 + ρ(x, y)) ≤ C(1 + d(x, y))

and because ρ is homogeneous

(1 + 2−kρ(x, y)) ≤ C(1 + dk(x, y)).

Hence assumptions of (3.3) are satisfied with d replaced by ρ which ends the proof.

Suppose that M is a smooth compact manifold of dimension q without boundary.

Assume that A is an elliptic differential operator on M of order m which is positive definite

on L2 with respect to a smooth positive density dµ. Fix a riemmanian metric d on M .

(3.12). Lemma. If M and A are as above, q > 1, m is order of A, supp f ⊂ [1/4, 4],

t < 1, then there is C such that

‖f(tA)‖2L1,L2 ≤ Ct−q/m(tq/m‖f‖2H(q/2) + ‖f‖2L2).

Proof :We need Hörmander’s estimate on spectral projections (see [16]) for a > 1/4 :

‖E([a, a+ a(m−1)/m))‖2L1,L2 ≤ Ca(q−1)/m.

Put a = t−1/4, h = t−(m−1)/m), n = 15([t−1/m] + 1). Then, using orthogonality and

Hörmander’s estimate we get

‖f(tA)‖2L1,L2 ≤
n∑
k=0

‖f(tA)E([a+ kh, a+ (k + 1)h))‖2L1,L2

≤ Ct−(q−1)/m
n∑
k=0

sup
x∈[(a+kh)t,(a+(k+1)ht)

|f(x)|2.

For any interval I we have

sup
x∈I
|f |2 ≤ C(|I|−1‖f‖2L2(I) + |I|‖∂xf‖2L2(I))

so
n∑
k=0

sup
x∈[(a+kh)t,(a+(k+1)ht)

|f(x)|2 ≤ C((ht)−1‖f‖2L2 + (ht)‖∂xf‖2L2)

Also

‖∂xf‖2L2 ≤ C‖f‖2(q−2)/q
L2 ‖f‖4/qH(q/2) ≤ C

′((ht)−2‖f‖2L2 + (ht)q−2‖f‖2H(q/2)).
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Finally

‖f(tA)‖2L1,L2 ≤ Ct−(q−1)/m((ht)−1‖f‖2L2 + (ht)q−1‖f‖2H(q/2))

≤ Ct−q/m(‖f‖2L2 + tq/m‖f‖2H(q/2)).

(3.13). Theorem. If M is a compact riemmanian manifold, q is the dimension of M ,

A is an elliptic differential operator of order m, positive definite on L2 with respect to a

smooth measure µ, F ∈ C(R), s > q/2 and for a non-zero ϕ ∈ C∞c (R+) and a constant C

sup
t>0
‖ϕδ(t)F‖H(s) ≤ C,

then F (A) is of weak type (1, 1) and bounded on Lp for 1 < p <∞.

Remark. A variant of (3.13) is valid on noncompact manifolds. One needs bounded

geometry assumptions to have global bound in Hörmander’s estimate and to control local

behaviour of the semigroup. Also conclusion asserts only boundedness of operator with

kernel restricted to a neighbourhood of diagonal.

Remark. Theorem remains valid form pseudodifferential operators. However, the a

one gets depend on m so one must pass to the powers of A (like in [6]).

Proof :We give the proof only for q > 1. (If q = 1 one must replace 1/m in (3.12) by

a larger number, and then tediously check that the proofs remain valid).

From the local Sobolev lemma we deduce that if F ∈ Cc(R), then F (A) has bounded

kernel, hence is bounded on all Lp, 1 ≤ p ≤ ∞. Therefore we can assume that suppF ⊂
[1,∞). The semigroup generated by differential operator A satisfies our assumptions with

any a > 0 as long as t is bounded (see for example [10]). Because of our assumption about

support of F estimates for large t are not needed. We proceed as in the proof of (3.8) but

using (3.12) and (2.11) instead of (2.10) . Indeed we should estimate ‖Kk‖B((1+dk)ε) for

k < 0. Fix k. Put dk = 2−kd. We write f̃(x) = f(e−x) so f(ek) = f(e−2mkA) = f̃(2mkA).

Then ∫
dk(x,e)<r

|f(ek)|(x, y)dx ≤ |{x : d(x, e) < r2k}|1/2‖f(ek)(·, y)‖L2

≤ Crq/22kq/2‖f̃(2mkA)‖L1,L2

≤ C1r
q/22kq/22−kq/2(2kq/2‖f̃‖H(q/2) + ‖f̃‖L2)

≤ C2r
q/2(2kq/2‖f‖H(q/2) + ‖f‖L2)

≤ C3(rq/2‖f‖L2 + ‖f‖H(q/2)).
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In the last line we use compactness of our manifold – we may assume that r2k is bounded.

Thus, we checked that assumptions of (2.11) are satisfied with κ = 2, γ = q, χ = q/2.
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