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Introduction

Let M be a measure space and let L be a positive definite operator on L2(M). By the

spectral theorem, for any bounded Borel measurable function m : [0,∞) 7→ C the operator

m(L)f =
∞∫
0

m(λ)dE(λ)f is bounded on L2(M).

We are interested in sufficient conditions on m for m(L) to be bounded on Lp(M),

p 6= 2.

A very general theorem of Stein [18] and its strengthening by Cowling [8] give such

conditions under the assumption that L generates a semigroup of contractions on L1. Then,

indeed, m(L) is bounded on Lp(M), 1 < p <∞, if m is of the form m(λ) = λ
∞∫
0

e−λξF (ξ)dξ

with F ∈ L∞(R+). The assumption on L is satisfied by many examples, but the condition

on m implies that m is holomorphic in the half-plane | arg(λ)| < π/2.

In the case of a Riemmanian manifold of exponential volume growth of riemannian

balls (or a noncompact semisimple Lie group) stronger positive results have been proved.

However, it is usually assumed that m is holomorphic in a parabolic region around the real

half-axis and in some cases it is known that this assumption is necessary [2], [3], [7], [19].

In contrast to the above, what follows from a 1960 result by Hörmander [13] is that

if M = Rn and L is the (minus) Laplace operator on Rn, then a bound on only a finite

number of derivatives of m suffices for m(L) to be bounded on Lp(M), 1 < p < ∞. This

has been generalized to M being a group of polynomial growth [1], or compact manifolds

[6], L being a Laplacian. In this work polynomial growth was crucial in the proof and the

growth rate determined the required regularity of m.

It turns out however, that the relation of the volume growth of the balls to the regu-

larity of m which guarantees boundedness of m(L) on Lp is not straightforward. For some

nilpotent Lie groups regularity of m is related to the topological dimension of the group
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rather than to its growth [11], [12], [17]. Also on groups NA in the Iwasawa decomposi-

tion of a semi-simple Lie group which are of exponential growth for some specific elliptic

L, estimates on only a finite number of derivatives of m imply boundedness of m(L) on

Lp, p 6= 2, [9], [10]. As these groups and the distinguished Laplacean on them are pretty

special, we would like to present another example, this time of a unimodular group of

exponential growth and an elliptic Laplacian L on it for which m ∈ C6
c (R+) implies that

m(L) is bounded on all Lp, 1 ≤ p <∞.

Our methods allow to handle a bit more general groups but, as they are now, seem to

be too crude to solve the problem in general. In fact, Christ and Müller [5] give an example

of a solvable Lie group on which m must be holomorphic. There is a large disparity between

our methods and the ones of [5]. This is the reason why some arguments are presented in

a more general form then actually needed for the proof here. Also in Lemmas (1.1) and

(1.2) we give sharp estimates for the constants involved, as those might be of interest of

their own.

Preliminaries

Let G be equal to R3, the multiplication being given by the formula

(t1, x1, y1)(t2, x2, y2) = (t1 + t2, e
t2x1 + x2, e

−t2y1 + y2).

We consider left invariant vector fields X, Y , T

X = ∂x, Y = ∂y, T = ∂t + x∂x − y∂y.

The corresponding right invariant vector fields X̃, Ỹ , T̃ are

X̃ = et∂x, Ỹ = e−t∂y, T̃ = ∂t.

Let

L = X2 + Y 2 + T 2, L̃ = X̃2 + Ỹ 2 + T̃ 2

and let pt be the convolution kernel of exp(tL):

exp(tL)f = f ∗ pt.
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We need the formula

exp(tL̃)f = pt ∗ f.

This formula is valid for all sublaplaceans on Lie groups. For the proof one may consider

the distribution KL supported at identity such that

Lf = f ∗KL.

Then

L̃f = KL ∗ f

and

∂t(f ∗ pt) = ∂t exp(tL)f = L exp(tL)f = exp(tL)Lf = f ∗KL ∗ pt = f ∗ (L̃pt).

So

∂tpt = L̃pt

and

∂t(pt ∗ f) = (∂tpt) ∗ f = (L̃pt) ∗ f = L̃(pt ∗ f).

As this equation has a unique solution for f in the domain of L̃, we have pt ∗f = exp(tL̃)f .

Schrödinger operators

As we shall see toward the end of the paper, our considerations here cannot be re-

stricted to sublaplaceans. We have to consider also Schrödinger operators that is operators

of the form

H =
∑

U∗j Uj

where Uj = Xj+iVj , Xj are vector fields and Vj are locally square integrable real functions.

Our operators Uj are closed operators with a common core C∞c (G). Consequently, by the

von Neumann theorem (cf. for example [20] Theorem 5.39) H is selfadjoint.

From now on we will assume that Xj generate G. For the proof of main theorem of

the paper we assume even more. Then it is assumed that Xj form a linear basis of the Lie

algebra of G. Let d(x) be the optimal control distance from x ∈ G to e associated to the

Xj ’s.
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(1.1). Lemma. For every f in C∞c (G) and γ > 0 we have:

γ|=(Hf, e2sdf)| ≤ <(Hf, e2sdf) + s2(1 + γ)2‖esdf‖2.

Proof: We have

(U∗j Ujf, e
2sdf) = (Ujf, Uj(e

2sdf)) = (Ujf, e
2sdUjf) + (Ujf, 2sXj(d)e2sdf) =

‖esdUjf‖2 + (Ujf, 2sXj(d)e2sdf)

and

|((U∗j Ujf, e2sdf)− ‖esdUjf‖2| = |(Ujf, 2sXj(d)e2sdf)| ≤ 2s‖esdUjf‖‖Xj(d)esdf‖

≤ α‖esdUjf‖2 + s2/α‖Xj(d)esdf‖2.

Next, by the inequality
∑
|Xjd(x)|2 ≤ 1,∑

‖(Xjd)esdf‖2 ≤ ‖esdf‖2

so

<(Hf, e2sdf) + s2/α‖esdf‖2 ≥ (1− α)
∑
‖esdUjf‖2

and

|=(Hf, e2sdf)| ≤ α
∑
‖esdUjf‖2 + s2/α‖esdf‖2.

Putting α = (1 + γ)−1 we have:

γ|=(Hf, e2sdf)| ≤ γ/(1 + γ)
∑
‖esdUjf‖2 + γ(1 + γ)s2‖esdf‖2

= (1− α)
∑
‖esdUjf‖2 + γ(1 + γ)s2‖esdf‖2

≤ <(Hf, e2sdf) + ((1 + γ) + γ(1 + γ))s2‖esdf‖2

which is our conclusion.

For a real s let

(f, g)s =

∫
G

f(x)ḡ(x)e2sd(x)dx

be the inner product in L2(e2sd). We write ‖f‖s for the corresponding norm.
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(1.2). Lemma. Let H and d be as above. For s negative (or positive) the semigroup

e−zH , <z > 0 extends (restricts) to a holomorphic semigroup on the weighted space

L2(e2sd). Moreover,

‖e−zH‖L2(e2sd),L2(e2sd) ≤ exp(<z(1 + |=z
<z
|)2s2).

Proof: This is a consequence of (1.1) . Indeed,we rewrite (1.1) as

γ|=(Hf, f)s| ≤ <(Hf, f)s + C‖f‖2s.

where C = s2(1 + γ)2. In general f ranges over C∞c (G), but if s ≤ 0 we may extend the

inequality above to the domain of H. To see this we write

〈f, g〉C,s =
1

2
(((H + CI)f, g)s + (f, (H + CI)g)s).

〈f, g〉C,s is a new scalar product on a dense subspace of L2(e2sd) and our inequality extends

to the domain of the corresponding quadratic form. From the proof of (1.1) we have

〈f, f〉C,s = <(Hf, f)s + C‖f‖2s ≈
∑
‖esdUjf‖2 + C‖f‖2s

so 〈f, f〉C,s is finite for f in the domain of H. We then have

<(z(H + CI)f, f) ≥ 0

for f in the domain of H and z in the sector Sγ = {z : |=z| ≤ γ<z}. This means that the

operator A = −z(H + CI) is dissipative in the L2(e2sd)-norm. Moreover,

etA = lim
n→∞

(I − t

n
A)−n.

On the right hand side we have a sequence of contractions on L2(e2sd) which is convergent

on functions from L2, which is a dense subset of L2(e2sd), s < 0. Therefore etA extends to

contractions on L2(esd). This completes the proof of the lemma for negative s. For s > 0

we obtain the lemma by duality.

5



(1.3). Lemma. If t > 0 and f ∈ L2

|e−tHf | ≤ exp(−t
∑

X∗jXj)|f |

almost everywhere.

Remark The Lemma is valid in general, but we will prove it only when {exp(tXj) :

t ∈ R} is unbounded. For example, if G is exponential. Then for every locally integrable

function Vj there exists a Borel function Fj such that XjFj = Vj .

Proof: By the Trotter formula [15] it is enough to prove the lemma for a single

U = X + iV . By assumption, there is a F such that XF = V . Then

exp(−iF )X exp(iF ) = X + iV = U, exp(−iF )X∗ exp(iF ) = X∗ − iV = U∗

and

exp(−iF )X∗X exp(iF ) = U∗U

so

exp(−iF ) exp(−tX∗X) exp(iF ) = exp(−tU∗U).

Since exp(−iF ) has absolute value 1 the Lemma follows.

In the sequel we will denote the kernel of the semigroup by e−zHδe, the second argu-

ment being replaced by e.

(1.4). Lemma. There is a constant C independent of Vj such that for all real l and s

‖e−(1+il)Hδe‖L2(esd) ≤ C exp(C(1 + l2)s2)

Proof: Note that (1.3) implies |e−(1/2)Hδe| ≤ exp(−(1/2)
∑
X∗jXj) = p1/2. As for

real z and pz the estimate is known, the Lemma follows from (1.2) .

Main Theorems

Now we come back to our group G as defined in the preliminaries. Let d be (left)

invariant riemannian metric on G. There is a constant C such that

Br = {(t, x, y) : d((t, x, y), 0) ≤ r} ⊂
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{(t, x, y) : |t| < r, |x| < C(er + 1), |y| < C(er + 1)}.

Let a weight function w be defined as w(t, x, y) = |xy|. A straightforward calculation

shows that for some C ∫
d(g,0)<r

(1 + w(g))−1dg ≤ Cr3.

(1.5). Theorem. There exists C such that for every s ∈ R we have

‖p1+is‖L1(G) ≤ C(1 + |s|5).

(1.6). Theorem. For every compactly supported F ∈ C6 (or F in the Sobolev space

H( 11
2 +ε)) the operator F (−L) is bounded on L1(G)

Theorem (1.6) is a consequence of (1.5) . Indeed, using the spectral theorem and

the inversion formula for the Fourier transform we have

F (−L) =
1

2π

∫
f̂(s)p1−isds,

where f(x) = F (x)ex. F ∈ H( 11
2 +ε) implies that

∫
|f̂(s)|(1 + |s|)5ds is convergent.

We are going to prove (1.5) . From (1.4) (putting Vj = 0) we know that∫
|p1+is(g)|ed(g,e)dg

≤
(∫
|p1+is(g)|2e(C+1)d(g,e)dg

)1/2(∫
e−2Cd(x,e)dg

)1/2

≤ C exp(Cs2).

Consequently, if r = Cs2∫
|p1+is(g)|dg ≤

∫
d(g,0)<r

|p1+is(g)|dg +

∫
d(g,0)≥r

|p1+is(g)|dg

≤
∫

d(g,0)<r

|p1+is(g)(1 + w(g))1/2|(1 + w(g))−1/2dg + e−r
∫

d(g,0)≥r

|p1+is(g)|ed(g,0)dg
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≤ ‖p1+is(1 + w)1/2‖L2‖(1 + w)−1/2‖L2(Br) + e−r
∫
|p1+is(g)|ed(g,0)dg

≤ C(1 + |s|2)3/2‖p1+is(1 + w)1/2‖L2 + e−Cs
2

CeCs
2

.

We are going to show that

(1.7) ‖p1+is(1 + w)1/2‖2L2 ≤ C(1 + |s|)4

and

(1.8) |∂s‖p1+isw1/2‖2L2 | ≤ C(1 + |s|)3.

We note that w ≤ Cecd for some C and c because w ≤ (1+ |x|)(1+ |y|) and and (x, y, u)→

(1 + |x|)(1 + |y|) is submultiplicative, by [14]. Consequently, the left hand side of both

(1.7) and (1.8) is finite, and (1.8) implies (1.7). To prove (1.8) we write

|∂s‖p1+isw1/2‖2L2 | = 2|<〈iLp1+is, wp1+is〉| = 2|=(〈Xp1+is, X(wp1+is)〉+

〈Y p1+is, Y (wp1+is)〉+ 〈Tp1+is, T (wp1+is)〉)|.

Since Tw = 0, we have

2|=(〈Xp1+is, X(wp1+is)〉+ 〈Y p1+is, Y (wp1+is)〉+ 〈Tp1+is, T (wp1+is)〉)| =

2|=(〈Xp1+is, (Xw)p1+is〉+ 〈Y p1+is, (Y w)p1+is〉)| ≤

2(|〈Xp1+is, sgn(x)|y|p1+is〉|+ |〈Y p1+is, sgn(y)|x|p1+is〉|).

We are going to estimate the second term, the argument for the first being similar. We

write

|〈Y p1+is, sgn(y)|x|p1+is〉| ≤ ‖|x|1/2p1+is‖L2‖|x|1/2Y p1+is‖L2 .

Now we note that

‖|x|1/2Y p1+is‖L2 ≤ C( sup
|z−1|<1/2

‖|x|1/2pz+is‖L2 + 1).

Indeed,

−〈Lp1+is, |x|p1+is〉 = ‖|x|1/2Tp1+is‖2L2 + ‖|x|1/2Xp1+is‖2L2 + ‖|x|1/2Y p1+is‖2L2+
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〈Tp1+is, |x|p1+is〉+ 〈Xp1+is, sgn(x)p1+is〉 ≥

‖|x|1/2Y p1+is‖2L2 + ‖|x|1/2Tp1+is‖2L2 − ‖|x|1/2Tp1+is‖L2‖|x|1/2p1+is‖L2−

‖Xp1+is‖L2‖p1+is‖L2 ≥

‖|x|1/2Y p1+is‖2L2 −
1

2
‖|x|1/2p1+is‖2L2 − C

but since pz depends analytically on z we have

‖|x|1/2Lp1+is‖L2 = ‖|x|1/2∂sp1+is‖L2 ≤ 2 sup
|z−1|<1/2

‖|x|1/2pz+is‖L2 .

As for the z’s |z− 1| < 1
2 the estimate trivially reduces to the case z = 1, we consider only

this case.

Thus we end up with the task to prove

‖|x|1/2p1+is‖2L2 ≤ C(1 + |s|3).

We have

|∂s‖|x|1/2p1+is‖2L2 | = |2<〈iL̃p1+is, |x|p1+is〉| =

|2=〈X̃2p1+is, |x|p1+is〉| = |2=〈e2t∂xp1+is, sgn(x)p1+is〉| =

|2〈et3/2∂xp1+is, sgn(x)et/2p1+is〉| ≤ 2‖et/2X̃p1+is‖L2‖et/2p1+is‖L2 .

We are going to estimate the second factor, the estimate for the first is similar.

We decompose the left regular representation of G using the Fourier transform in x

coordinate. Put

Hx = −∂2t − e−2t∂2y + x2e2t.

Hx is a Schrödinger operator on two dimensional solvable group G0. We have

‖et/2p1+is‖2L2 =

+∞∫
−∞

‖et/2 exp(−(1 + is)Hx)δ0‖2L2(G0)
dx =

∫
|x|<e−c|s|2

+

∫
e−c|s|2≤|x|<1

+

∫
|x|≥1
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By (1.4)

‖et/2 exp(−(1 + is)Hx)δ0‖2L2 ≤ CeCs
2

independently of x ∈ R. Hence the first of the three integrals above is bounded by a

constant provided that c ≥ C.

Since L̃ is elliptic on G we have

‖X̃2f‖L2(G) ≤ C(‖L̃f‖L2(G) + ‖f‖L2(G)).

This inequality remains valid in every unitary representation, so

‖x2e2tf‖L2(G0) ≤ C(‖Hxf‖L2(G0) + ‖f‖L2(G0))

and

‖et/2f‖L2(G0) ≤ ‖e
2tf‖1/4L2(G0)

‖f‖3/4L2(G0)
= |x|−1/2‖x2e2tf‖1/4L2(G0)

‖f‖3/4L2(G0)
≤

C|x|−1/2(‖Hxf‖L2(G0) + ‖f‖L2(G0))
1/4‖f‖3/4L2(G0)

.

We have

‖et/2 exp(−(1 + is)Hx)δ0‖2L2(G0)
≤

C|x|−1(‖Hx exp(−(1 + is)Hx)δ0‖L2(G0) + ‖ exp(−(1 + is)Hx)δ0‖L2(G0))
1/2×

‖ exp(−(1 + is)Hx)δ0‖3/2L2(G0)
≤

C|x|−1(‖Hx exp(−(1 + is)Hx)δ0‖2L2(G0)
+ ‖ exp(−(1 + is)Hx)δ0‖2L2(G0)

) =

C|x|−1(‖Hx exp(−Hx)δ0‖2L2(G0)
+ ‖ exp(−Hx)δ0‖2L2(G0)

) ≤

C|x|−1‖ exp(−(1/2)Hx)δ0‖2L2(G0)

so the second integral is bounded by 2C
1∫

exp(−c|s|2)
x−1dx = C1|s|2.

If |x| ≥ 1, then∫
|x|≥1

1

|x|
‖ exp(−(1/2)Hx)δ0‖2L2(G0)

≤
+∞∫
−∞

‖ exp(−(1/2)Hx)δ0‖2L2(G0)
= ‖p1/2‖2L2(G)

so the third integral is bounded by a constant. Consequently

‖et/2p1+is‖2L2 ≤ C(1 + |s|2)

which ends the proof.
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