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Introduction

This paper is concerned with the decay of pn(e) for symmetric random walk on discrete

solvable group G of exponential growth. Previous results in [1], [3], [4], [6], [7], [8] shows

that on Lie groups one has polynomial decay or decay of type exp(−n1/3) and that this

remains true for polycyclic groups. Morover there is rather general estimate from above of

the similar type. So one may conjecture that such a type of decay is correct for all solvable

groups of exponential growth. We are going to show that in fact on discrete solvable

groups much faster decay is possible. One may also notice that our groups have no finite

presentation. As only groups with finite presentations can occur in geometric problems it

would be nice to handle those, however we leave this problem open.

Note Our results seem to be a particular case of results from [5]. While [5] covers

more topics and the technical details are different the idea for getting both lower and upper

bound is the same. Morover, in [5] it is pointed out that one may modify the example to

get finitely presented solvable groups with ”fast” decay of pn(e).

Results

Let Gd be the semidirect product of Zd and ZZ
d

and pn be the simple random walk

on Gd. We will call the Zd part H. Then an element of G is a pair (h, f) with h ∈ H and

f beeing integer valued function on H taking only finitely many values different from 0.

In the sequel we will denote by F the set of all such f . H acts on F by translations (we

define translations by the formula (T (h)f)(x) = f(xh)). Multiplication on G is given by

the formula

(h1, f1)(h2, f2) = (h1h2, T (h−12 )f1 + f2).

Let Ah be a subgroup of G consisting of pairs (0, f) with f(x) = 0 for x 6= h. Of course

Ah is isomorphic to Z. Note that T (h)−1Ae = Ah. We choose (δk, 0), k = 1, . . . , d and

(0, δ0) as generators of Gd. Then, the probability distribution p1 is given by

p1((±δk, 0)) = p1((0,±δ0)) =
1

2(d+ 1)
.

As usual, pn is the n-th convolution power of p1.
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(1.1). Theorem. For every d there exist C and c > 0 such that for all n

c exp(−Cnd/(d+2) log n) ≤ p2n(e) ≤ C exp(−cnd/(d+2)).

There exist G and p1 such that for every ε > 0 pn(e) decays faster then exp(−n1−ε).

(1.2). Theorem. Let Z and Y be random variables with values in Ae and H respectively.

Assume that Z and Y are symmetric, have finite second moment, P (Z = 0) > 0, and that

the values of Z (Y resp.) generate Ae (H resp.). Let Zj and Yj be independent random

variables, Zj have the same distribution as Z and Yj have the same distribution as Y .

Then there is c > 0 such that

c exp(−c−1 log(n)nd/d+2) ≤ sup
g∈G

P (

n∏
j=1

(YjZj) = g) ≤ exp(−cnd/d+2).

P. Note that YjZj = (Yj , Zj) and

n∏
j=1

(Yj , Zj) = (

n∏
j=1

Yj ,

n∏
j=1

T−1(

n∏
l=j+1

Yj)Zj)

sup
g∈G

P (
n∏
j=1

(YjZj) = g) ≤ sup
f∈F

P (
n∏
j=1

T−1(
n∏

l=j+1

Yl)Zj = f).

Since F is commutative

(1)
n∏
j=1

T−1(
n∏

l=j+1

Yl)Zj =
∏
h∈H

T−1(h)
∏

h=
∏n

l=j+1
Yl

Zj

Since T−1(h)Zj takes values in Ah, the first product above is simply a cartesian produkt

(of independent variables). Morover, on each axis we may apply to Zj the central limit

theorem, so

P (

n∏
j=1

T−1(

n∏
l=j+1

Yl)Zj = f) = E(
∏
h∈H

P (

nh∏
j=1

Zj = f(h)))

≤ E(
∏
h∈H

(1 + cnh)−1/2) ≤ E(exp(−c̃|{h ∈ H : nh > 0}|))
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where nh is the number of j such that h =
∏n
l=j+1 Yl. By [2]

E(exp(−c̃|{h ∈ H : nh > 0}|)) ≤ exp(−cnd/(d+2)).

Similarly

P (
n∏
j=1

(Yj , Zj) ∈ H) = P (
n∏
j=1

T−1(
n∏

l=j+1

Yl)Zj = 0) ≥ E(
∏
h∈H

(1 + cnh)−1/2)

≥ E(exp(−c0 log(2 + n)|{h ∈ H : nh > 0}|))

≥ E(exp(−c0|{h ∈ H : nh > 0}|))log(2+n)

≥ c exp(−c1nd/(d+2))log(2+n)

where the last inequality follows from [2]. Next, since Y is symmetric E(Y ) = 0 and

E(|
∏n
j=1 Yj |2) ≤ Cn. Put

φ(x) = c exp(−c1xd/(d+2))log(2+x)

nad let r be the smallest such that Cnr−2 ≤ 1/2φ(n). Then r ≤ C3

φ(n) and

P (|
n∏
j=1

Yj | > r) ≤ 1/2φ(n)

so with probability at least 1/2φ(n) the product
∏n
j=1(Yj , Zj) takes a value in the ball

centered at 0 and of radius r in H. This ball has C4r
d elements, so the maximal probability

is at least

1/2φ(n)/(C4r
d) ≥ C5φ(n)d+1

which differs from φ only because of constants.

P. of (1.1) : Let X be a random variable with distributon p1 and let Y nad Z be

(independent) random variables such that

P (Z = (0,±δ0)) = 1/2 P (Y = (±δk, 0) = 1/2d k = 1, . . . , d.

We consider X as a mixture of random variables Y and Z, that is X equals Y with

probability d/(d + 1), otherwise X equals Z. Next, let Xi (or Yi or Zi) be independent
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random variables with the same distribution as X (resp. Y or Z). Consequently, we treat∏n
i=1Xi as a product of Yi and Zi (with random choice between Yi and Zi). We group Y -s

and Z-s into series. More precisely, consider sequence of independent (also from Y -s and

Z-s) random variables ω such that P (ω(i) = 0) = d/(d+ 1) and P (ω(i) = 1) = 1/(d+ 1).

We have Xi = Yi iff ω(i) = 0 (and Xi = Zi iff ω(i) = 1). Let A = {ω(1) = 0} and

B = {ω(1) = 1}. Let mi and li be defined inductively: m0 = l0 = 1, mi+1 = min{k : k >

mi, ω(k−1) = 0, ω(k) = 1}, li+1 = min{k : k > li, ω(k−1) = 1, ω(k) = 0}. The differences

mi −mi−1 are independent, and except for i = 1 have a common distribution (which is

convolution of two geometric distrbutions). There exists c1 > 0 such that P (l[c1n] > n) <

exp(−c1n). On A put Ỹi =
∏mi−1
k=li−1

Yk and Z̃i =
∏li−1
k=mi

Zk, on B put Ỹi =
∏mi−1
k=li

Yk and

Z̃i =
∏li+1−1
k=mi

. Let An = A ∩ {l[c1n] ≤ n}. Then, on An

n∏
i=1

Xi =

[c1n]∏
i=1

(ỸiZ̃i)

n∏
i=l[c1n]

Xi.

Let us note that Ỹi and Z̃i are independent, and Ỹi have common distribution with values

in H and that Z̃i have common distribution with values in Ae and that P (Z̃1 = 0) > 0.

Next

sup
g∈G

P ((
n∏
i=1

Xi = g) ∩A) ≤ P (l[c1n] > n) + sup
g∈G

P (

[c1n]∏
i=1

(ỸiZ̃i) = g)

≤ exp(−c3n) + exp(−c2nd/(d+2))

where the estimate for the second term follows from (1.2) . Estimate on B is similar, thus

giving the upper estimate.

To get the lower bound, we first note, that as in (1.2) , it is enough to estimate

P (
n∏
j=1

Xj ∈ H).

Morover, we may add to p1 atom in 0. Indeed, if q = ap+ (1− p)δ0 then

qn =
∑

cn,kp
k

where cn,k are binomial coefficients. There exists b > 0 such that for large n∑
2k<bn

cn,kr ≤ exp(−bn)
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Since p2k(0) decreases and p2k+1(0) = 0

qn(0) ≤
∑
k≥bn

cn,2kp
2k(0) + exp(−bn) ≤

p2[bn](0) + exp(−bn)

so any subexponential lower bound for qn(0) will give corresponding lower bound for pn(0).

We put

p̃1(x) =
2d+ 2

2d+ 3
p1 +

1

2d+ 3
δ(0,0)

Then P (Z = (0,±δ0)) = P (Z = (0, 0)) = 1/3.

Next, we restrict our attention to A. We are going to lenghten the product to get fixed

number of series, and then to apply (1.2) . Since
∏n
i=1Xi and ω seem to be dependent,

we consider conditional distribution and then take expectation in ω. As in the proof of

(1.2) , we note that the second (in F ) coordinate of
∏
Xi has a (conditional in ω and

Yj , j = 1, . . .) distribution which is a cartesian product of one dimensional distributions.

Each of those one dimensional distributions is a convolution power of distribution of Z.

Since the distribution q of Z is unimodal (thanks to the added atom at 0), its convolution

powers have maximum at 0 for any k ≥ 0. Hence q?k(0) is decreasing in k. Consequently

P ((

n∏
i=1

Xi ∈ H) ∩A|ω, Y1, Y2, . . .) ≥ P ((

ln+1−1∏
i=1

Xi ∈ H) ∩A|ω, Y1, Y2, . . .).

Next, with the notation as in the proof of upper bound

P ((
n∏
i=1

Xi ∈ H) ∩A) ≥ P ((

ln+1−1∏
i=1

Xi ∈ H) ∩A) = P ((
n∏
i=1

(ỸiZ̃i) ∈ H) ∩A)

and we end the proof applying (1.2) .

To get the last claim of (1.1) we consider H = G1. One easily checks that the number

of sites visited by the random walk on G1 is larger then th corresponding number on Zd,

for any d, so in the final estimate we can take d as large as we wish.
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