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Chapter 1

Derivatives and differentials

1.1 Functions of a single variable

1. Limits. When the successive values of a variable x approach nearer
and nearer a constant quantity a, in such a way that the absolute value of
the difference x − a finally becomes and remains less than any preassigned
number, the constant a is called the limit of the variable x. This definition
furnishes a criterion for determining whether a is the limit of the variable
x. The necessary and sufficient condition that it should be, is that, given
positive number ε, no matter how small, the absolute value of x− a should
remain less than ε for all values which the variable x can assume, after a
certain instant.

Numerous examples of limits are to be found in Geometry and Algebra.
For example, the limit of the variable quantity x = (a2−m2)/(a−m), as m
approaches a, is 2a; for x− 2a will be less than ε whenever m− a is taken
less than ε. Likewise, the variable x = a−1/n, where n is a positive integer,
approaches the limit a when n increases indefinitely; for a − x is less than
ε whenever n is greater than 1/ε. It is apparent from these examples that
the successive values of the variable x, as it approaches its limit, may form
a continuous or a discontinuous sequence.

It is in general very difficult to determine the limit of a variable quantity.
The following proposition, which we will assume as self-evident, enables us,
in many cases, to establish the existence of a limit

Any variable quantity which never decreases, and which always remains
less than a constant quantity L, approaches a limit l, which is less than or
at most equal to L.

Similarly, any variable quantity which never increases, and which always
remains greater than a constant quantity L′, approaches a limit l′, which is
greater than or else equal to L′.

For example, if each of an infinite series of positive terms is less, re-
spectively, than the corresponding term of another infinite series of positive
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6 1. DERIVATIVES AND DIFFERENTIALS

terms which is known to converge, then the first series converges also, for
the sum

∑
n of the first n terms evidently increases with n, and this sum is

constantly less than the total sum of the second series.

2. Functions. When two variable quantities are so related that the value
of one of them depends upon the value of the other, they are said to be
functions of each other. If one of them be supposed to vary arbitrarily, it
is called the independent variable. Let this variable be denoted by x, and
let us suppose, for example, that it can assume all values between two given
numbers a and b (a < b). Let y be another variable, such that to each
value of x between a and b, and also for the values a and b themselves, there
corresponds one definitely determined value of y. Then y is called a function
of of x, defined in the interval (a, b); and this dependence is indicated by
writing the equation y = f(x). For instance, it may happen that y is the
result of certain arithmetical operations performed upon x. Such is the
case for the very simplest functions studied in elementary mathematics, e.g.
polynomials, rational functions, radicals, etc.

A function may also be defined graphically. Let two coordinate axes Ox,
Oy be taken in a plane; let us join any two points A and B of this plane
by a curvilinear arc ACB, of any shape, which is not cut in more than one
point by any parallel to the axis Oy. Then the ordinate of a point of this
curve will be a function of the abscissa. The arc ACB may be composed of
several distinct portions which belong to different curves, such as segments
of straight lines, arcs of circles, etc.

In short, any absolutely arbitrary law may be assumed for finding the
value of y from that of x. The word function, in its most general sense,
means nothing more nor less than this: to every value of x corresponds a
value of y.

3. Continuity. The definition of functions to which the infinitesimal
calculus applies does not admit of such broad generality. Let y = f(x) be
a function defined in a certain interval (a, b) and let x0 and x0 + h be two
values of x in that interval. If the difference f(x0 + h) − f(x0) approaches
zero as the absolute value of h approaches zero, the function f(x) is said to
be continuous for the value x0. From the very definition of a limit we may
also say that a function f(x) is continuous for x = x0, if, corresponding to
every positive number ε, no matter how small, we can find a positive number
η, such that

|f(x0) + h)− f(x0)| < ε

for every value of h less than η in absolute value.1 We shall say that a
function f(x) is continuous in an interval (a, b) if it is continuous for every
value of x lying in that interval, and if the differences

f(a+ h)− f(a), f(b− h)− f(b)

1The notation |a| denotes the absolute value of a
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each approaches zero when h which is now to be taken only positive, ap-
proaches zero.

In elementary textbooks it is usually shown that polynomials, rational
functions, the exponential and the logarithmic function, the trigonometric
functions, and the inverse trigonometric functions are continuous functions,
except for certain particular values of the variable. It follows directly from
the definition of continuity that the sum or the product of any number
of continuous functions is itself a continuous function; and this holds for
the quotient of two continuous functions also, except for the values of the
variable which the denominator vanishes.

It seems superfluous to explain here the reasons which lead us to as-
sume that functions which are defined by physical conditions are, at least in
general, continuous.

Among the properties of continuous functions we shall now state only the
two following, which one might be tempted to think were self-evident, but
which really amount to actual theorems, of which rigorous demonstrations
will be given later.2

1. If the function y = f(x) is continuous in the interval (a, b), and if N
is a number between f(a) and f(b), then the equation f(x) = N has
at least one root between a and b.

2. There exists at least one value of x belonging to the interval (a, b),
inclusive of its end points, for which y takes on a value M which is
greater than, or at least equal to, the value of the function at any other
point in the interval. Likewise, there exists a value of x for which y
takes on a value m, than which the function assumes no smaller value
in the interval.

The numbersM andm are called the maximum and the minimum values
of f(x), respectively, in the interval (a, b). It is clear that the value of x for
which f(x) assumes its maximum value M , or value of x corresponding to
the minimumm, may be at one end points, a or b. It follows at once from the
two theorems above, that if N is a number between M and m, the equation
f(x) = N has at least one root which lies between a and b.

4. Examples of discontinuities. The functions which we shall study will
be in general continuous, but they may cease to be so for certain exceptional
values of the variable. We proceed to give several examples of the kinds of
discontinuity which occur most frequently.

The function y = 1/(x− a) is continuous for every value x0 of x except
a. The operation necessary to determine the value of y from that of x ceases
to have a meaning when x is assigned the value a; but we note that when
x is very near to a the absolute value of y is very large, and y is positive or

2See Chapter ??
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negative with x− a. As the difference x− a diminishes, the absolute value
of y increases indefinitely, so as eventually to become and remain greater
than any preassigned number. This phenomenon is described by saying
that y becomes infinite when x = a. Discontinuity of this kind is of great
importance in Analysis.

Let us consider next the function y = sin 1/x. As x approaches zero, 1/x
increases indefinitely, and y does not approach any limit whatever, although
it remains between +1 and −1. The equation sin 1/x = A. where |A| < 1,
has an infinite number of solutions which lie between 0 and ε no matter how
small ε be taken. Whatever value be assigned to y when x = 0, the function
under consideration cannot be made continuous for x = 0.

An example of a still different kind of discontinuity is given by the con-
vergent infinite series

S(x) = x2 +
x2

1 + x2
+ · · ·+ x2

(1 + x2)n
+ . . .

When x approaches zero, S(x) approaches the limit 1, although S(0) = 0.
For, when x = 0 every term of the series is zero, and hence S(0) = 0. But if
x be given a value different from zero, a geometric progression is obtained,
of which the ratio is 1/(1− x2). Hence

S(x) =
x2

1− 1
1+x2

=
x2(1 + x2)

x2
= 1 + x2;

and the limit of S(x) is seen to be 1. Thus, in this example, the function
approaches a definite limit as x approaches zero, but that limit is different
from the value of the function for x = 0.

5. Derivatives. Let f(x) be a continuous function. Then the two terms
of the quotient

f(x+ h)− f(x)

h

approach zero simultaneously, as the absolute value of h approaches zero,
while x remains fixed. If this quotient approaches a limit, this limit is called
the derivative of the function f(x), and is denoted by y′, or by f ′(x), in the
notation due to Lagrange.

An important geometrical concept is associated with this analytic notion
of derivative. Let us consider, in a plane XOY , the curve AMB, which
represents the function y = f(x), which we shall assume to be continuous
in the interval (a, b). Let M and M ′ be two points on this curve, in the
interval (a, b), and let their abscissae be x and and x+ h, respectively. The
slope of the straight line MM ′ is then precisely the quotient above. Now as
h approaches zero the pointM ′ approaches the pointM ; and, if the function
has a derivative, the slope of the line MM ′ approaches the limit y′. The



1.1. FUNCTIONS OF A SINGLE VARIABLE 9

straight line MM ′, therefore, approaches a limiting position, which is called
the tangent to the curve. It follows that the equation of the tangent is

Y − y = y′(X − x),

where X and Y are the running coordinates.
To generalize, let us consider any curve in space, and let

x = f(t), y = ϕ(t), z = ψ(t)

be the coordinates of a point on the curve, expressed as functions of a vari-
able parameter t. Let M and M ′ be two points of the curve corresponding
to two values, t and t + h, of the parameter. The equations of the chord
MM ′ are then

X − f(t)

f(t+ h)− f(t)
=

Y − ϕ(t)

ϕ(t+ h)− ϕ(t)
=

Z − ψ(t)

ψ(t+ h)− ψ(t)

If we divide each denominator by h and then let h approach zero, the chord
MM ′ evidently approaches a limiting position, which given by the equations

X − f(t)

f ′(t)
=
Y − ϕ(t)

ϕ′(t)
=
Z − ψ(t)

ψ′(t)

provided, of course, that each of the three functions f(x), ϕ(x), ψ(x) pos-
sesses a derivative. The determination of the tangent to a curve thus reduces,
analytically, to the calculation of derivatives.

Every function which possesses a derivative is necessarily continuous, but
the converse is not true. It is easy to give examples of continuous functions
which do not possess derivatives for particular values of the variable. The
function y = x sin 1/x, for example, is a perfectly continuous function of
x, for x = 0,3 and y approaches zero as x approaches zero. But the ratio
y/x = sin 1/x does not approach any limit whatever, as we have already
seen.

Let us next consider the function y = x
2
3 . Here y is continuous for

every value of x; and y = when x = 0. But the ratio y/x − x−
1
3 increases

indefinitely as x approaches zero. For abbreviation the derivative is said to
be infinite for x = 0; the curve which represents the function is tangent to
the axis of y at the origin.

Finally, the function

y =
xe

1
x

1 + e
1
x

is continuous at x = 0,but the ratio y/x approaches two different limits
according as x is always positive or always negative while it is approaching

3After the value zero has been assigned to y for x = 0.
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zero. When x is positive and small, e1/x is positive and very large, and the
ratio y/x approaches 1. But if x is negative and very small in absolute value,
e1/x is very small, and the ratio y/x approaches zero. There exist then two
values of the derivative according to the manner in which x approaches zero:
the curve which represents this function has a corner at the origin.

It is clear from these examples that there exist continuous functions
which do not possess derivatives for particular values of the variable. But
the discoverers of the infinitesimal calculus confidently believed that a con-
tinuous function had a derivative in general. Attempts at proof were even
made, but these were, of course, fallacious. Finally, Weierstrass succeeded in
settling the question conclusively by giving examples of continuous functions
which do not possess derivatives for any values of the variable whatever.4

But as these functions have not as yet been employed in any applications,
we them shall not consider them here. In the future, when we say that a
function f(x) has a derivative in the interval (a, b), we shall mean that it
has an unique finite derivative for every value of x between a and b and also
for x = a (h being positive) and for x = b (h being negative), unless an
explicit statement made to the contrary.

6. Successive derivatives. The derivative of a function f(x) is in general
another function of x, f ′(x). If f ′(x) in turn has a derivative the new
function is called the second derivative of f(x), and is represented by y′′ or
by f ′′(x). In the same way the third derivative y′′′, of f ′′′(x), is defined to
be the derivative of the second, and so on. In general, the nth derivative
y(n), or f (n)(x), is the derivative of the derivative of order (n − 1). If, in
thus forming the successive derivatives, we never obtain a function which
has no derivative, we may imagine the process carried on indefinitely. In
this way we obtain an unlimited sequence of derivatives of the function f(x)
with which we started. Such is the case for all functions which have found
any considerable application up to the present time.

The above notation is due to Lagrange. The notation Dny or Dnf(x),
due to Cauchy, is also used occasionally to represent the nth derivative.
Leibniz’ notation will be given presently.

7 Rolle’s theorem. The use of derivatives in the study of equations
depends upon the following proposition, which is known a Rolle’s Theorem:

Let a and b be two roots of the equation f(x) = 0. If the function f(x)
is continuous and possesses a derivative in the interval (a, b), the equation
f ′(x) = 0 has at least one root which lies between a and b.

For the function f(x) vanishes, by hypothesis, for x = a and x = b. If
it vanishes at every point of the interval (a, b), its derivative also vanishes
at every point of the interval, and the theorem is evidently fulfilled. If the

4Note read at the Academy of Sciences of Berlin, July 18, 1872. Other examples are
to be found in the memoir by Darboux on discontinuous functions (Annales de l’Ecole
Normale Superieure, Vol. IV, 2d series). One of Weierstrass’s examples is given later
(Chapter ??).
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function f(x) does not vanish throughout the interval, it will assume either
positive or negative values at some points. Suppose, for instance, that it has
positive values. Then it will have a maximum value M for some value of x,
say x1, which lies between a and b (§ 3, Theorem II). The ratio

f(x1 + h)− f(x1)

h

where h is taken positive, is necessarily negative or else zero. Hence the
limit of this ratio, i.e. f ′(x1), cannot be positive; i.e. f ′(x1) ≤ 0. But if we
consider f ′(x1) as the limit of the ratio

f(x1 − h)− f(x1)

−h

where h is positive, it follows in the same manner that f ′(x1) ≥ 0. From
these two results it is evident that f ′(x1) = 0.

8. Law of the mean. It is now easy to deduce from the above theorem
the important law of the mean:5

Let f(x) be a continuous function which has a derivative in the interval
(a, b). Then

(1.1) f(b)− f(a) = (b− a)f ′(c),

where c is a number between a and b.

In order to prove this formula, let ϕ(x) be another function which has
the same properties as f(x), i.e. it is continuous and possesses a derivative
in the interval (a, b). Let us determine three constants, A, B, C such that
the auxiliary function

ψ(x) = Af(x) +Bϕ(x) + C

vanishes for x = a and for x = b. The necessary and sufficient conditions
for this are

Af(a) +Bϕ(a) + C = 0, Af(b) +Bϕ(b) + C = 0;

and these are satisfied if set

A = ϕ(a)− ϕ(b), B = f(b)− f(a), C = f(a)ϕ(b)− f(b)ϕ(a).

The new function ψ(x) thus defined is continuous and has a derivative In the
interval (a, b). The derivative ψ′(x) = Af ′(x) + Bϕ′(x) therefore vanishes

5”Formule de accrissemets finis.” The French also use ”Formule de la moyenne” as
a synonym. Other English synonyms are ”Average value theorem” and ”Mean value
theorem”.
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for some value c which lies between a and b, whence, replacing A and B by
their values, we find a relation of the form

(1.1′) [ϕ(a)− ϕ(b)]f ′(c) = [f(b)− f(a)]ϕ′(c).

It is merely necessary to take ϕ(x) = x in order to obtain the equality which
was to be proved. It is to be noticed that this demonstration does not
presuppose the continuity of the derivative f ′(x).

From the theorem just proven it follows that if the derivative f ′(x) zero
at each point of the interval (a, b), the function f(x) has the same value at
every point of the interval; for the application of the formula to two values
x1, x2 belonging to the interval (a, b), gives f(x1) = f(x2). Hence, if two
functions have the same derivative, their difference is a constant; and the
converse is evidently true also. If a function F (x) be given whose derivative
is f(x), all other functions which have the same derivative are found by
adding to F (x) an arbitrary constant.6

The geometrical interpretation of the equation (1.1) is very simple. Let
us draw the curve AMB which represents the function y = f(x) in the
interval (a, b). Then the ratio [f(b)− f(x)]/(b− a) is the slope of the chord
AB, while f ′(c) is the slope of the tangent at a point C of the curve whose
abscissa is c. Hence the equation (1.1) expresses the fact that there exists a
point C on the curve AMB, between A and B, where the tangent is parallel
to the chord AB.

If the derivative f(x) is continuous, and if we let a and b approach
the same limit x0 according to any law whatever, the number c, which lies
between a and b, also approaches x0, and the equation (1.1) shows that the
limit of the ratio

f(b)− f(x)

b− a

is f ′(x0). The geometrical interpretation is as follows. Let us consider upon
the curve y = f(x) a point M whose abscissa is x0, and two points A and B
whose abscissae are a and b, respectively. The ratio [f(b)− f(a)]/(b− a) is

6This theorem is sometimes applied without due regard to the conditions imposed in
its statement. Let f(x) and ϕ(x), for example, be two continuous functions which have
derivatives f ′(x), ϕ′(x) in an interval (a, b). If the relation f ′(x)ϕ(x) − f(x)ϕ′(x) = 0 is
satisfied by these four functions, it is sometimes accepted as proved that the derivative of
the function f/ϕ, or

f ′(x)ϕ(x)− f(x)ϕ′(x)

ϕ(2

is zero, and that accordingly f/ϕ is constant in the interval (a, b) But this conclusion
is not absolutely rigorous unless the function ϕ(x) does not vanish in the interval (a, b).
Suppose, for instance, that ϕ(x) and ϕ′(x) vanish for a value c between a and b. A function
f(x) equal to C1ϕ(x) between a and c, and to C2ϕ(x) between c and b, where C1 and
C2 are different constants, is continuous and has a derivative in the interval (a, b), and
we have f ′(x)ϕ(x) − f(x)ϕ′(x) = 0 for every value of x in the interval. The geometrical
interpretation is apparent.
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equal to the slope of the chord AB, while f ′(x0) is the slope of the tangent
atM . Hence, when the two points A and B approach the pointM according
to any law whatever, the secant AB approaches, as its limiting position, the
tangent at the point M .

This does not hold in general however, if the derivative is not continuous.
For instance, if two points be taken on the curve y = x

2
3 , on opposite sides of

the y axis, it is evident from a figure that the direction of the secant joining
them can be made to approach any arbitrarily assigned limiting value by
causing the two points to approach the origin according to a suitably chosen
law.

The equation (1.1′) is sometimes called the generalized law of the mean.
From it de l’Hospital’s theorem on indeterminate forms follows at once. For,
suppose f(a) = 0 and ϕ(x) = 0. Replacing b by x in (1.1′), we find

f(x)

ϕ(x)
=
f ′(x1)

ϕ′(x1)

where x1 lies between a and x. This equation shows that if the ratio
f ′(x)/ϕ′(x) approaches a limit as x approaches a, the ratio f(x)/ϕ(x) ap-
proaches the same limit, if f(a) = 0 and ϕ(a) = 0.

9. Generalizations of the law of the mean. Various generalizations of the
law of the mean have been suggested. The following one is due to Stieltjes
(Bulletin de la Societe Mathematique, Vol. XVI, p. 100). For the sake of
definiteness consider three functions, f(x), g(x), h(x), each of which has
derivatives of the first and second orders. Let a, b, c be three particular
values of the variable (a < b < c). Let A be a number defined by the
equation ∣∣∣∣∣∣

f(a) g(a) h(a)
f(b) g(b) h(b)
f(c) g(c) h(c)

∣∣∣∣∣∣−A

∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣ = 0,

and let

ϕ(x) =

∣∣∣∣∣∣
f(a) g(a) h(a)
f(b) g(b) h(b)
f(x) g(x) h(x)

∣∣∣∣∣∣−A

∣∣∣∣∣∣
1 a a2

1 b b2

1 x x2

∣∣∣∣∣∣
be an auxiliary function. Since this function vanishes when x = b and when
x = c, its derivative must vanish for some value ζ between b and c. Hence∣∣∣∣∣∣

f(a) g(a) h(a)
f(b) g(b) h(b)
f ′(ζ) g′(ζ) h′(ζ)

∣∣∣∣∣∣−A

∣∣∣∣∣∣
1 a a2

1 b b2

0 1 2ζ

∣∣∣∣∣∣ = 0

If b be replaced by x in the left-hand side of this equation, we obtain a
function which vanishes when x = a and when x = b. Its derivative therefore
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vanishes for some value of x between a and b which we shall call ξ. The new
equation thus obtained is∣∣∣∣∣∣

f(a) g(a) h(a)
f ′(ξ) g′(ξ) h′(ξ)
f ′(ζ) g′(ζ) h′(ζ)

∣∣∣∣∣∣−A

∣∣∣∣∣∣
1 a a2

0 1 2ξ
0 1 2ζ

∣∣∣∣∣∣ = 0.

Finally, replacing ζ by x in the left-hand side of this equation, we obtain a
function of x which vanishes when x = ξ and when x = ζ. Its derivative
vanishes for some value η, which lies between ξ and ζ and therefore between
a and c. Hence A must have the value

A =
1

1 · 2

∣∣∣∣∣∣
f(a) g(a) h(a)
f ′(ξ) g′(ξ) h′(ξ)
f ′′(η) g′′(η) h′′(η)

∣∣∣∣∣∣
where ξ lies between a and b, and η lies between a and c.

This proof does not presuppose the continuity of the second derivatives
f ′′(x), g′′(x), h′′(x). If these derivatives are continuous, and if the values
a, b, c approach the same limit x0, we have, in the limit,

limA =
1

1 · 2

∣∣∣∣∣∣
f(x0) g(x0) h(x0)
f ′(x0) g′(x0) h′(x0)
f ′′(x0) g′′(x0) h′′(x0)

∣∣∣∣∣∣ .
Analogous expressions exist for n functions and the proof follows the same
lines. If only two functions f(x) and g(x) are taken, the formulae reduce to
the law of the mean if we set g(x) = 1.

An analogous generalization has been given by Schwarz (Annali di Math-
ematica, 2d series, Vol. X).

1.2 Functions of several variables

10. Introduction. A variable quantity ω whose value depends on the values of
several other variables, x, y, z, . . . , t, which are independent of each other, is
called a function of the independent variables, x, y, z, . . . , t; and this relation
is denoted by writing ω = f(x, y, z, . . . , t). For definiteness, let us suppose
that ω = f(x, y) is a function of the two independent variables x and y. If
we think of x and y as the Cartesian coordinates of a point in the plane,
each pair of values (x, y) determines a point of the plane, and conversely. If
to each point of a certain region A in the xy plane, bounded by one or more
contours of any form whatever, there corresponds a value of ω, the function
f(x, y) is said to be defined in the region A.

Let (x0, y0) be the coordinates of a point M0 lying in this region.
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The function f(x, y) is said to be continuous for the pair of values (x0, y0)
if, corresponding to any preassigned positive number ε, another positive num-
ber η exists such that

|f(x0 + h, y0 + k)− f(x0, y0)| < ε

whenever |h| < η and |k| < η.

This definition of continuity may be interpreted as follows. Let us sup-
pose constructed in the xy plane a square of side 2η aboutM0 as center, with
its sides parallel to the axes. The point M ′ whose coordinates are x0 + h,
y0 + k will lie inside this square, if |h| < η and |k| < η. To say that the
function is continuous for the pair of values (x0, y0) amounts to saying that
by taking this square sufficiently small we can make the difference between
the value of the function atM0 and its value at any other point of the square
less than ε in absolute value.

It is evident that we may replace the square by a circle about (x0, y0) as
center. For, if the above condition is satisfied for all points inside a square,
it will evidently be satisfied for all points inside the inscribed circle. And
conversely, if the condition is satisfied for all points inside a circle, it will
also be satisfied for all points inside the square inscribed in that circle. We
might then define continuity by saying that an η exists for every ε, such that
whenever

√
h2 + k2 < η we also have

|f(x0 + h, y0 + k)− f(x0, y0)| < ε

The definition of continuity for a function of 3, 4, . . . , n independent vari-
ables is similar to the above.

It is clear that any continuous function of the two independent variables
x and y is a continuous function of each of the variables taken separately.
However, the converse does not always hold.7

11. Partial derivatives. If any constant value whatever be substituted for
y, for example, in a continuous function f(x, y), there results a continuous
function of the single variable x. The derivative of this function of x, if it
exists, is denoted by fx(x, y) or by ωx. Likewise the symbol ωy, or fy(x, y),
is used to denote the derivative of the function f(x, y) when x is regarded
as constant and y as the independent variable. The functions fx(x, y) and
fy(x, y) are called the partial derivatives of the function f(x, y). They are
themselves, in general, functions of the two variables x and y. If we form

7Consider, for instance, the function f(z, y), which is equal to 2xy/(x2 + y2) when
two two variables x and y are not both zero, and which is zero when x = 0 and y = 0.
It is evident that this is a continuous function of x when y is constant, and vice versa.
Nevertheless it not a continuous function of the two independent variables x and y for
the pair of values x = 0, y = 0, For, if the point (x, y) approaches the origin upon line
x = y, the function f(x, y) approached the limit 1 and not zero. Such functions have been
studied by Baire in his thesis.
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their partial derivatives in turn, we get the partial derivatives of the second
order of the given function f(x, y). Thus there are four partial derivatives of
the second order, fx2(x, y), fxy(x, y), fyx(x, y), fy2(x, y). The partial deriva-
tives of the third, fourth, and higher orders are defined similarly. In general,
given a function ω(x, y, z, . . . , t) of any number of independent variables, a
partial derivative of the nth order is the result of n successive differentiations
of the function f , in a certain order, with respect to any of the variables
which occur in f . We will now show that the result does not depend upon
the order in which the differentiations are carried out.

Let us first prove the following lemma:
Let ω = f(x, y) be a function of the two variables x and y. Then fxy =

fyx provided that these two derivatives are continuous.
To prove this let us first write the expression

U = f(x+∆x, y +∆y)− f(x, y +∆y)− f(x+∆x, y) + f(x, y)

in two different forms, where we suppose that x, y,∆x,∆y have definite
values. Let us introduce the auxiliary function

ϕ(v) = f(x+∆x, v)− f(x, v)

where v is an auxiliary variable. Then we may write

U = ϕ(y +∆y)− ϕ(y)

Applying the law of the mean to the function ϕ(v), we have

U = ∆yϕy(y + θ∆y), where 0 < θ < 1;

or, replacing ϕy by its value,

U = ∆y[fy(x+∆x, y + θ∆y)− fy(x, y + θ∆y)].

If we now apply the law of the mean to the function fy(u, y+θ∆y) regarding
u as the independent variable, we find

U = ∆x∆yfyx(x+ θ′∆x, y + θ∆y), 0 < θ′ < 1.

From the symmetry of the expression U in x, y,∆x,∆y, we see that we
would also have, interchanging x and y,

U = ∆y∆xfxy(x+ θ′1∆x, y + θ1∆y),

where θ1, and θ
′
1 are again positive constants less than unity. Equating these

two values of U and and dividing by ∆x∆y, we have

fxy(x+ θ′1∆x, y + θ1∆y) = fyx(x+ θ′∆x, y + θ∆y).
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Since the derivatives fxy(x, y) and fyx(x, y) are supposed continuous, the two
members of the above equation approach fxy(x, y) and fyx(x, y) respectively,
as ∆x and ∆y approach zero, and we obtain the theorem which we wished
to prove.

It is to be noticed in the above demonstration that no hypothesis what-
ever is made concerning the other derivatives of the second order, fx2 and
fy

2
. The proof applies also to the case where the function f(x, y) depends

upon any number of other independent variables besides x and y, since
these other variables would merely have to be regarded as constants in the
preceding developments.

Let us now consider a function of any number of independent variables,

ω = f(x, y, z, . . . , t),

and let Ω be a partial derivative of order n of this function. Any permutation
in the order of the differentiations which leads to Ω can be effected by
a series of interchanges between two successive differentiations; and, since
these interchanges do not alter the result as we have just seen, the same
will be true of the permutation considered. It follows that in order to have
a notation which is not ambiguous for the partial derivatives of the nth
order, it is sufficient to indicate the number of differentiations performed
with respect to each of the independent variables. For instance, any nth
derivative of a function of three variables, ω(x, y, z), will be represented by
one or the other of the notations

fxpyqzr(x, y, z), Dn
xpyqzrf(x, y, z),

where p + q + r = n.8 Either of these notations represents the result of
differentiating f successively p times with respect to x, q times with respect
to y and r times with respect to z, these operations being carried out in any
order whatever. There are three distinct derivatives of the first order, fx,
fy, fz; six of the second order, fx2 , fy2 , fz2 , fxy, fyz, fxz; and so on.

In general, a function of p independent variables has just as many dis-
tinct derivatives of order n as there are distinct terms in a homogeneous
polynomial of order n in p independent variables; that is,

(n+ 1)(n+ 2) . . . (n+ p− 1)

1 · 2 · . . . (p− 2)(p− 1)

as is shown in the theory of combinations.

Practical rules. A certain number of practical rules for the calculation
of derivatives are usually derived in elementary books on the Calculus. A

8The notation fxpyqzr (x, y, z) in used instead of the notation f
(n)
xp,yqzr

(x, y, z) for sim-
plicity. Thus the notation fxy(x, y), used in place of f ′′

xy(x, y), is simpler and equally
clear.
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table of such rules is appended, the function and its derivative being placed
on the same line:

y = xa, y′ = axa−1;

y = ax, y′ = ax log a,

where the symbol log denotes the natural logarithm;

y = log x, y′ =
1

x
;

y = sinx, y′ = cosx;

y = cosx, y′ = − sinx,

y = arc sinx, y′ =
1

±
√
1− x2

;

y = arc tanx, y′ =
1

1 + x2
;

y = uv, y′ = u′v + uv′;

y =
u

v
, y′ =

u′v − uv′

v2
;

y = f(u), yx = f ′(u)ux;

y = f(u, v, w), yx = uxfu + vxfv + wxfw.

The last two rules enable us to find the derivative of a function of a
function and that of a composite function if fu, fv, fw are continuous. Hence
we can find the successive derivatives of the functions studied in elementary
mathematics, – polynomials, rational and irrational functions, exponential
and logarithmic functions, trigonometric functions and their inverses, and
the functions derivable from all of these by combination.

For functions of several variables there exist certain formulae analogous
to the law of the mean. Let us consider, for definiteness, a function f(x, y) of
the two independent variables x and y. The difference f(x+h, y+k)−f(x, y)
may be written in the form

f(x+ h, y + k)− f(x, y) = [f(x+ h, y + k)− f(x, y + k)]

+ [f(x, y + k)− f(x, y)]

to each part of which we may apply the law of the mean. We thus find

f(x+ h, y + k)− f(x, y) = hfx(x+ θh, y + k) + kfy(x, y + θ′k),

where θ and θ′ each lie between zero and unity.
This formula holds whether the derivatives fx and fy are continuous

or not. If these derivatives are continuous, another formula, similar to the
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above, but involving only one undetermined number θ, may be employed.9

In order to derive this second formula consider the auxiliary function ϕ(t) =
f(x+ht, y+kt), where x, y, h and k have determinate values and t denotes
an auxiliary variable. Applying the law of the mean to this function, we find

ϕ(1)− ϕ(0) = ϕ′(θ), 0 < θ < 1.

Now ϕ(t) is a composite function of t, and its derivative ϕ′(t) is equal to
hfx(x + ht, y + kt) + kfy(x + ht, y + kt); hence the preceding formula may
be written in the form

f(x+ h, y + k)− f(x, y) = hfx(x+ θh, y + θk) + kfy(x+ θh, y + θk).

12. Tangent plane to a surface. We have seen that the derivative of a
function of a single variable gives the tangent to a plane curve. Similarly, the
partial derivatives of a function of two variables occur in the determination
of the tangent plane to a surface. Let

(1.2) z = F (x, y)

be the equation of a surface S, and suppose that the function F (x, y), to-
gether with its first partial derivatives, is continuous at a point (x0, y0) of
the xy plane. Let z0 be the corresponding value of z, and M0(x0, y0, z0) the
corresponding point on the surface S. If the equations

(1.3) x = f(t), y = ϕ(t), z = ψ(t)

represent a curve C on the surface S through the point M0, the three func-
tions f(t), ϕ(t), ψ(t), which we shall suppose continuous and differentiable,
must reduce to x0, y0, z0, respectively, for some value t0 of the parameter t.
The tangent to this curve at the point M0 is given by the equations (§ 5)

(1.4)
X − x0
f ′(t0)

=
Y − y0
ϕ′(t0)

=
Z − z0
ψ′(t0)

.

Since the curve C lies on the surface S, the equation ψ(t) = F [f(t), ϕ(t)]
must hold for all values of t; that is, this relation must be an identity in t.

9Another formula may be obtained which involves only one undetermined number θ,
and which holds even when the derivatives fx and fy are discontinuous. For the application
of the mean to the auxiliary function ϕ(t) = f(x+ ht, y + k) + f(x, y + kt) gives

ϕ(1)− ϕ(0) = ϕ′(θ), 0 < θ < 1,

or
f(x+ h, y + k)− f(x, y) = hfx(x+ θh, y + k) + kfy(x, y + θk)

The operations performed, and hence the final formula, all hold provided the derivatives
fx and fy merely exist at the points (x+ ht, y + k), (x, y + kt), 0 ≤ t ≤ 1.
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Taking the derivative of the second member by the rule for the derivative of
a composite function, and setting t = t0, we have

(1.5) ψ′(t0) = f ′(t0)Fx0 + ϕ′(t0)Fy0 .

We can now eliminate f ′(t0), ϕ
′(t0), ψ

′(t0) between the equations (1.4) and
(1.5), and the result of this elimination is

(1.6) Z − z0 = (X − x0)Fx0 + (Y − y0)Fy0 .

This is the equation of a plane which is the locus of the tangents to all curves
on the surface through the point M0. It is called the tangent plane to the
surface.

13. Passage from increments to derivatives. We have defined the suc-
cessive derivatives in terms of each other, the derivatives of order n being
derived from those of order (n − 1) and so forth. It is natural to inquire
whether we may not define a derivative of any order as the limit of a certain
ratio directly, without the intervention of derivatives of lower order. We have
already done something of this kind for fxy; (§ 11) for the demonstration
given above shows that fxy is the limit of the ratio

f(x+∆x, y +∆y)− f(x+∆x, y)− f(x, y +∆y) + f(x, y)

∆x∆y

as ∆x and ∆y both approach zero. It can be shown in like manner that the
second derivative f ′′ of a function f(x) of a single variable is the limit of the
ratio

f(x+ h1 + h2)− f(x+ h1)− f(x+ h2) + f(x)

h1h2
as h1 and h2 both approach zero.

For, let us set
f1(x) = f(x+ h1)− f(x)

and then write the above ratio in the form

f1(x+ h2)− f1(x)

h1h2
=
f ′1(x+ θh2)

h1
, 0 < θ < 1;

or

f ′(x+ h1 + θh2)− f ′(xθh2)

h1
= f ′′(x+ θ′h1 + θh2), 0 < θ′ < 1.

The limit of this ratio is therefore the second derivative f ′′, provided that
derivative is continuous.

Passing now to the general case, let us consider, for definiteness, a func-
tion of three independent variables, ω = f(x, y, z). Let us set

∆h
xω =f(x+ h, y, x)− f(x, y, z),

∆k
yω =f(x, y + k, z)− f(x, y, z),

∆l
zω =f(x, y, z + l)− f(x, y, z),
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where ∆h
xω, ∆

k
yω, ∆

l
zω are the first increments of ω. If we consider h, k,

l as given constants, then these three first increments are themselves func-
tions of x, y, z, and we may form the relative increments of these functions
corresponding to increments h1, k1, l1 of the variables. This gives us the
second increments, ∆h1

x ∆h
xω,∆

h1
x ∆k

yω, . . . . This process can be continued
indefinitely; an increment of order n would be defined as a first increment
of an increment of order (n− 1). Since we may invert the order of any two
of these operations, it will be sufficient to indicate the successive increments
given to each of the variables. An increment of order n would be indicated
by some such notation as the following:

∆(n)ω = ∆h1
x ∆h2

x . . .∆
hp
x ∆k1

y . . .∆
kq
y ∆l1

z . . .∆
lr
x f(x, y, z)

where p+ q+ r = n and where the increments h, k, l may be either equal or
unequal. This increment may be expressed in terms of a partial derivative
of order n, being equal to the product

h1h2 . . . hpk1 . . . kql1 . . . lr

× fxpyqzr(x+ θ1h1 + . . . θphp, y + θ′1k1 + . . . θ′qkq, z + θ′′1 l1 + . . . θ′′q lr),

where every θ lies between 0 and 1. This formula has already been proved
for first and for second increments. In order to prove it in general, let us
assume that it holds for an increment of order (n− 1), and let

ϕ(x, y, z) = ∆h2
x . . .∆

hp
x ∆k1

y . . .∆
kq
y ∆l1

z . . .∆
lr
x f(x, y, z).

Then, by hypothesis,

ϕ(x, y, z) = h2 . . . hpk1 . . . kql1 . . . lrfxp−1yqzr(x+θ1h1+. . . θphp, y+. . . , z+. . . ).

But the nth increment considered is equal to ϕ(x+h1, y, z)−ϕ(x, y, z); and
if we apply the law of the mean to this increment, we finally obtain the
formula sought.

Conversely, the partial derivative fxpyqzr is the limit the limit of the ratio

∆h1
x ∆h2

x . . .∆
hp
x ∆k1

y . . .∆
kq
y ∆l1

z . . .∆
lr
x f(x, y, z)

h1h2 . . . hpk1k2 . . . kql1 . . . lr

as all the increments approach zero.
It is interesting to notice that this definition is sometimes more general

than the usual definition. Suppose, for example, that ω = f(x, y) = ϕ(x) +
ψ(y) is a function of x and y, where neither ϕ nor ψ has a derivative. Then
ω also has no first derivative, and consequently second derivatives are out of
the question, in ordinary sense. Nevertheless, if we adopt the new definition,
the derivative fxy is the limit of the fraction

f(x+ h, y + k)− f(x+ h, y)− f(x, y + k) + f(x, y)

hk
,
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which is equal to

ϕ(x+ h) + ψ(y + k)− ϕ(x+ k)− ψ(y)− ϕ(x)− ψ(y − k) + ϕ(x) + ψ(y)

hk
.

But the numerator of this ratio is identically zero. Hence the ratio ap-
proaches zero as a limit, and we find fxy = 0.10

1.3 The differential notation

The differential notation, which has been in use longer than any other,11 is
due to Leibniz. Although it is by no means indispensable, it possesses certain
advantages of symmetry and of generality which are convenient, especially
in the study of functions of several variables. This notation is founded upon
the use of infinitesimals.

14. Differentials. Any variable quantity which approaches zero as a limit
is called an infinitely small quantity, or simply infinitesimal. The condition
that the quantity be variable is essential, for a constant, however small, is
not an infinitesimal unless it is zero.

Ordinarily several quantities are considered which approach zero simul-
taneously. One of them is chosen as the standard of comparison, and is
called the principal infinitesimal. Let α be the principal infinitesimal, and
β another infinitesimal. Then β is said to be an infinitesimal of higher order
with respect to α, if the ratio β/α approaches zero with α. On the other
hand, β is called an infinitesimal of the first order with respect to α, if the
ratio β/α approaches a limit K different from zero as α approaches zero. In
this case

β

α
= K + ε,

where ε is another infinitesimal with respect to α. Hence

β = α(K + ε) = Kα+ αε,

and Kα is called the principal part of β. The complementary term αε is an
infinitesimal of higher order with respect to α. In general, if we can find

10A similar remark may be made regarding functions of a single variable. For example,
the function f(z) = x3cos1/x has the derivative

f ′(x) = 2x2 cos
1

x
+ x sin

1

x

and f ′(x) has no derivative for x = 0. But the ratio

f(2α)− 2f(α)− f/(0)

α2

or 8α cos(1/2α)− 2α cos(1/α), has the limit zero when α approaches zero.
11With the possible exception of Newton’s notation.
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a positive power of α, say αn, such that β/αn approaches a finite limit K
different from zero as α approaches zero, β is called an infinitesimal of order
n with respect to α. Then we have

β

αn
= K + ε,

or
β = αn(K + ε) = Kαn + αnε.

The term Kαn is again called the principal part of β.
Having given these definitions, let us consider a continuous function y =

f(x), which possesses a derivative f ′(x). Let ∆x be an increment of x, and
let ∆y denote the corresponding increment of y. From the very definition
of a derivative, we have

∆y

∆x
= f ′(x) + ε,

where ε approaches zero with ∆x. If ∆x be taken as the principal infinites-
imal, ∆y is itself an infinitesimal whose principal part is f ′(x)∆x.12 This
principal part is called the differential of y and is denoted by dy.

dy = f ′(x)∆x.

When f(x) reduces to x itself, the above formula becomes dx = ∆x; and
hence we shall write, for symmetry,

dy = f ′(x)dx,

where the increment dx of the independent variable x to be given the same
fixed value, is which otherwise arbitrary and of course variable, for all of the
several dependent functions of x which may be under consideration at the
same time.

Let us take a curve C whose equation is y = f(x) and consider two
points on it, M and M ′, whose abscissae are x and x+ dx, respectively. In
the triangle MTN we have

NT =MN tan∠TMN = dxf ′(x).

Hence NT represents the differential dy, while ∆y is equal to NM ′. It
is evident from the figure that M ′T is an infinitesimal of higher order, in
general, with respect to NT , as M ′ approaches M , unless MT is parallel to
the x axis.

Successive differentials may be defined, as were successive derivatives,
each in terms of the preceding. Thus we call the differential of the differential

12Strictly speaking, we should here exclude the case where f ′(x) = 0. It is, however
convenient to retain the same definition of du = f ′(x)∆x in this case also, even though it
is not the principal part of ∆y.
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of the first order the differential of the second order, where dx is given the
same value in both cases, as above. It is denoted by d2y.

d2y = d(dy) = [f ′′(x)dx]dx = f ′′(x)(dx)2.

Similarly, the third differential is

d3y = d(d2y) = [f ′′′(x)dx2]dx = f ′′′(x)(dx)3,

and so on. In general, the differential of the differential of order (n− 1) is

dny = f (n)(x)dxn.

The derivatives f ′(x), f ′′(x), . . . f (n)(x), . . . can be expressed, on the other
hand, in terms of differentials, and we have a new notation for the deriva-
tives:

y′ =
dy

dx
, y′′ =

d2y

dx
, . . . , f (n)(x) =

dny

dxn
, . . . .

To each of the rules for the calculation of a derivative corresponds a rule for
the calculation of a differential. For example, we have

dxm = mxm−1dx, dax = ax log adx;

d log x =
dx

x
, d sinx = cosxdx; . . . ;

darc sin =
dx

±
√
1− x2

, darc tanx =
dx

1a+ x2
.

Let us consider for a moment the case of a function of a function. Let
y = f(u), where u is a function of the independent variable x. Then

yx = f ′(u)ux.

whence, multiplying both sides by dx, we get

yxdx = f ′(u)× uxdx;

that is,

dy = f ′(u)du.

The formula for dy is therefore the same as if u were the independent vari-
able. This one of the advantages of the differential notation. In the deriva-
tive notation there are two distinct formulae,

yx = f ′(x), yx = f ′(u)ux,

to represent the derivative of y with respect to x, according as y is given
directly as a function of x or is given as a function of x by means of an
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auxiliary function u. In the differential notation the same formula applies
in each case.13

If y = f(u, v, w) is a composite function, we have

yx = uxfu + vxfv + wxfw,

at least if fu, fv, fw are continuous, or, multiplying by dx,

yxdx = uxdxfu + vxdxfv + wxdxfw

that is
dy = fudu+ fvdv + fwdw.

Thus we have, for example,

d(uv) = udv + vdu, d(
u

v
) =

vdu− udv

v2
.

The same rules enable us to calculate the successive differentials. Let us seek
to calculate the successive differentials of a function y = f(x), for instance.
We have already

dy = f ′(u)du.

In order to calculate d2y, it must be noted that du cannot be regarded
as fixed, since u is not the independent variable. We must then calculate
the differential of the composite function f ′(u)du, where u and du are the
auxiliary functions. We thus find

d2y = f ′′(u)du2 + f ′(u)d2u.

To calculate d3y, we must consider d2y as a composite function, with u, du,
d2u as auxiliary functions, which leads to the expression

d3y = f ′′′(u)du3 + 3f ′′(u)dud2u+ f ′(u)d3u;

and so on. It should be noticed that these formulae for d2y, d3y, etc., are
not the same as if u were the independent variable, on account of the terms
d2u, d3u etc.14

A similar notation is used for the partial derivatives of a function of
several variables. Thus the partial derivative of order n of f(x, y, z), which
is represented by fxpyqzr in our previous notation, is represented by

∂nf

∂xp∂yq∂zr
, p+ q + r = n,

13This particular advantage is slight, however; for the last formula above is equally well
a general one and covers both the cases mentioned.

14This disadvantage would seem completely to offset the advantage mentioned above.
Strictly speaking, we should distinguish between d2xy and d2uy, etc.
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in the differential notation.15 This notation is purely symbolic, and no sense
represents a quotient, as it does in the case of functions of a single variable.

15. Total differentials. Let ω = f(x, y, z), be a function of the three
independent variables x, y, z. The expression

dω =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

is called the total differential of ω, where dx, dy, dz are three fixed in-
crements, which are otherwise arbitrary, assigned to the three independent
variables x, y, z. The three products

∂f

∂x
dx,

∂f

∂y
dy,

∂f

∂z
dz

are called partial differentials.
The total differential of the second order d2ω is the total differential of

the total differential of the first order, the increments dx, dy, dz remaining
the same as we pass from one differential to next higher. Hence

d2ω = d(dω) =
∂dω

∂x
dx+

∂dω

∂y
dy +

∂dω

∂z
dz;

or expanding,

d2ω =

(
∂2f

∂x2
dx+

∂2f

∂x∂y
dy +

∂2f

∂x∂z
dz

)
dx

+

(
∂2f

∂x∂y
dx+

∂2f

∂y2
dy +

∂2f

∂y∂z
dz

)
dy

+

(
∂2f

∂x∂z
dx+

∂2f

∂y∂z
dy +

∂2f

∂z2
dz

)
dz

=
∂2f

∂x2
dx2 +

∂2f

∂y2
dy2 +

∂2f

∂z2
dz2

+ 2
∂2f

∂x∂y
dxy + 2

∂2f

∂x∂z
dxdz + 2

∂2f

∂y∂z
dydz.

If ∂2f be replaced by ∂f2, the right-hand side of this equation becomes the
square of

∂f

∂x
dx,

∂f

∂y
dy,

∂f

∂z
dz.

We may then write, symbolically,

d2ω =

(
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)(2)

,

15This use of the letter ∂ to denote the partial derivatives of a function of several
variables is due to Jacobi. Before his time the same letter d was used as is used for the
derivatives of a function of a single variable.
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it being agreed that ∂f2 is to be replaced by ∂2f after expansion.

In general, if we call the total differential of the total differential (n− 1)
the total differential of order n, and denote it by dnω we may write, in the
same symbolism,

dnω =

(
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)(n)

,

where ∂fn is to be replaced by ∂nf after expansion; that is, in our ordinary
notation,

dnω =
∑

Apqr
∂nf

∂xp
∂yq∂zrdxpdyqdzr, p+ q + r = n,

where

Apqr =
n!

p!q!r!

is the coefficient of the term apbqcr in the development of (a+ b+ c)n. For,
suppose this formula holds for dnω. We will show that then it holds for
dn+1ω; and this will prove it in general, since we have already proved it for
n = 2. From the definition, we find

dn+1ω = d(dnω)

=
∑

Apqr

[
∂n+1f

∂xp+1∂yq∂zr
dxp+1dyqdzr +

∂n+1f

∂xp∂yq+1∂zr
dxpdyq+1dzr

+
∂n+1f

∂xp∂yq∂zr+1
dxpdyqdzr+1

]
;

whence, replacing ∂n+1f by ∂fn+1, the right-hand side becomes

∑
Apqr

∂fn

∂xp∂yq∂zr
dxpdyqdzr

(
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)
,

or (
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)(n)(∂f
∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)
.

Hence, using the same symbolism, we may write

dn+1ω =

(
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)(n+1)

.

Note. Let us suppose that the expression for dω, obtained in any way
whatever, is

(1.7) dω = Pdx+Qdy +Rdz,
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where P , Q, R are any functions x, y, z. Since by definition

dω =
∂ω

∂x
dx+

∂ω

∂y
dy +

∂ω

∂z
dz,

we must have(
∂ω

∂x
− P

)
dx+

(
∂ω

∂y
−Q

)
dy +

(
∂ω

∂z
−R

)
dz = 0

where dx, dy, dz are any constants. Hence

(1.8)
∂ω

∂x
= P,

∂ω

∂y
= Q,

∂ω

∂z
= R.

The single equation (1.7) is therefore equivalent to the three separate equa-
tions (1.8); and determines all three partial derivatives at once.

In general, if the nth total differential be obtained in any way whatever,

dnω =
∑

Cpqrdx
pdyqdzr;

then the coefficients Cpqr are respectively equal to the corresponding nth
derivatives multiplied by certain numerical factors. Thus all these deriva-
tives are determined at once. We shall have occasion to use these facts
presently.

16. Successive differentials of composite functions. Let ω = F (u, v, w) be
a composite function, u, v, w being themselves functions of the independent
variables x, y, z, t. The partial derivatives may then be written down as
follows

∂ω

∂x
=
∂F

∂u

∂u

∂x
+
∂F

∂v

∂v

∂x
+
∂F

∂w

∂w

∂x
,

∂ω

∂y
=
∂F

∂u

∂u

∂y
+
∂F

∂v

∂v

∂y
+
∂F

∂w

∂w

∂y
,

∂ω

∂z
=
∂F

∂u

∂u

∂z
+
∂F

∂v

∂v

∂z
+
∂F

∂w

∂w

∂z
,

∂ω

∂t
=
∂F

∂u

∂u

∂t
+
∂F

∂v

∂v

∂t
+
∂F

∂w

∂w

∂t
.

If these four equations be multiplied by dx, dy, dz, dt, respectively, and
added, the left-hand side becomes

∂ω

∂x
dx+

∂ω

∂y
dy +

∂ω

∂z
dz +

∂ω

∂t
dt

that is, dω; and the coefficients of

∂F

∂u
,

∂F

∂v
,

∂F

∂w
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on the right-hand side are du, dv, dw, respectively. Hence

(1.9) dω =
∂F

∂u
du+

∂F

∂v
dv +

∂F

∂w
dw,

and we see that the expression of the total differential of the first order
of a composite function is the same as if the auxiliary functions were the
independent variables. This is one of the main advantages of the differential
notation. The equation (1.9) does not depend, in form, either upon the
number or upon the choice of the independent variables; and it is equivalent
to as many separate equations as there are independent variables.

To calculate d2ω, let us apply the rule just found for dω, noting that the
second member of (1.9) involves the six auxiliary functions u, v, w, du, dr,
dw. We thus find

d2ω =
∂2F

∂u2
du2 +

∂2F

∂u∂v
dudv +

∂2F

∂u∂w
dudw +

∂F

∂u
d2u

+
∂2F

∂u∂v
dudv +

∂2F

∂v2
dv2 +

∂2F

∂v∂w
dvdw +

∂F

∂v
d2v

+
∂2F

∂u∂w
dudw +

∂2F

∂v∂w
dvdw +

∂2F

∂w2
dw2 +

∂F

∂w
d2w,

or, simplifying and using the same symbolism as above,

d2ω =

(
∂F

∂u
du+

∂F

∂v
dv +

∂F

∂w
dw

)(2)

+
∂F

∂u
d2u+

∂F

∂v
d2v +

∂F

∂w
d2w.

This formula is somewhat complicated on account of the terms in d2u, d2v,
d2w which drop out when u, v, w are the independent variables. This limita-
tion of the differential notation should be borne in mind, and the distinction
between d2ω in the two cases carefully noted. To determine d3ω we would
apply the same rule to d2ω, noting that d2ω depends upon the nine aux-
iliary functions u, v, w, du, du, dw, d2u, d2v, d2w; and so forth. The general
expressions for these differentials become more and more complicated; dnω
is an integral function of du, dv, dw, d2u, . . . , dnu, dnv, dnw, and the terms
containing dnu, dnv, dnw are

∂F

∂u
dnu+

∂F

∂v
dnv +

∂F

∂w
dnw.

If, in the expression for dnω, u, v, w, du, du, dw, . . . be replaced by their
values in terms of the independent variables, dnω becomes an integral poly-
nomial in dx, dy, dz, . . . whose coefficients are equal (cf. Note, § 15) to the
partial derivatives of ω of order n, multiplied by certain numerical factors.
We thus obtain these derivatives at once.

Suppose, for example, that we wished to calculate the first and second
derivatives of a composite function ω = f(u), where u is a function of
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two independent variables u = ϕ(x, y). If we calculate these derivatives
separately, we find for the two partial derivatives of the first order

(1.10)
∂ω

∂x
=
∂ω

∂u

∂u

∂x
,

∂ω

∂y
=
∂ω

∂u

∂u

∂y
.

Again, taking the derivatives of these two equations with respect to x, and
then with respect to y, we find only the three following distinct equations,
which give the second derivatives:

∂2ω

∂x2
=
∂2ω

∂u2

(
∂u

∂x

)2

+
∂ω

∂u

∂2u

∂x2
,

∂2ω

∂x∂y
=
∂2ω

∂u2
∂u

∂x

∂u

∂y
+
∂ω

∂u

∂2u

∂x∂y
,

∂2ω

∂y2
=
∂2ω

∂u2

(
∂u

∂y

)2

+
∂ω

∂u

∂2u

∂y2
.

(1.11)

The second of these equations is obtained by differentiating the first of equa-
tions (1.10) with respect to y, or the second of them with respect to x. In
the differential notation these five relations (1.10) and (1.11) may be written
in the form

dω =
∂ω

∂u
du,

d2ω =
∂2ω

∂u2
du2 +

∂ω

∂u
du2.

(1.12)

If du and d2u in these formulae be replaced by

∂u

∂x
dx+

∂u

∂u
dy and

∂2u

∂x2
dx2 +

∂2u

∂x∂u
dxdy +

∂2u

∂y2
dy2,

respectively, the coefficients of dx and dy in the first give the first partial
derivatives of ω, while the coefficients of dx2, 2dxdy, and dy2 in the second
give the second partial derivatives of ω.

17. Differentials of a product. The formula for the total differential
of order n of a composite function becomes considerably simpler in certain
special cases which often arise in practical applications. Thus, let us seek
the differential of order n of the product of two functions ω = uv. For the
first values of n we have

dω = vdu+ udv, d2ω = vd2u+ 2dudv + udv; . . . ;

and, in general, it is evident from the law of formation that

dnω = vdnu+ C1dvd
n−1u+ C2d

2vdn−2u+ · · ·+ udnv,
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where C1, C2, . . . are positive integers. It might be shown by algebraic in-
duction that these coefficients are equal to those of the expansion of (a+b)n;
but the same end may be reached by the following method, which is much
more elegant, and which applies to many similar problems. Observing that
C1, C2, . . . do not depend upon the particular functions u and v employed,
let us take the special functions u = ex, v = ey, where x and y are the two
independent variables, and determine the coefficients for this case. We thus
find

ω = ex+y, dω = ex+y(dx+ dy), . . . , dω = ex+y(dx+ dy)n,

du = exdx, d2u = exdx2, . . . , dv = eydy, d2v = eydy2, . . . ;

and the general formula, after division by ex+y, becomes

(dx+ dy)n = dxn + C1dydn
n−1 + C2dy

2dnn−2 + · · ·+ dyn.

Since dx and dy are arbitrary, it follows that

C1 =
n

1
, C2 =

n(n− 1)

1 · 2
, . . . , C2 =

n(n− 1) · · · (n− p+ 1)

1 · 2 · · · p
, . . . , . . . ;

and consequently the general formula may be written

(1.13) dn(uv) = vdnu+
n

1
dvdn−1u+

n(n− 1)

1 · 2
d2vdn−2u+ · · ·+ udnv.

This formula applies for any number of independent variables. In particular,
if u and v are functions of a single variable x, we have, after division by dxn,
the expression for the nth derivative of the product of two functions of a
single variable.

It is easy to prove in a similar manner formulae analogous to (1.13) for
a product of any number of functions.

Another special case in which the general formula reduces to a simpler
form is that in which u, v, w are integral linear functions of the independent
variables x, y, z.

u = ax+ by + cz + f,

v = a′x+ b′y + c′z + f ′,

w = a′′x+ b′′y + c′′z + f ′′,

where the coefficients a, a′, a′′, b, b′, . . . are constants. For then we have

du = adx+ bdy + cdz,

dv = a′dx+ b′dy + c′dz,

dw = a′′dx+ b′′dy + c′′dz′′,
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and all the differentials of higher order dnu, dnv, dnw, where n > 1, vanish.
Hence the formula for dnω is the same as if u, v, w were the independent
variables; that is,

dω =

(
∂F

∂u
du+

∂F

∂v
dv +

∂F

∂w
dw

)(n)

.

We proceed to apply this remark.
18. Homogeneous functions. A function ϕ(x, y, z) is said to be homoge-

neous of degree m, if the equation

ϕ(u, v, w) = tm(x, y, z)

is identically satisfied when we set

u = tx, v = ty, w = tz.

Let us equate the differentials of order n of the two sides of this equation
with respect to t, noting that u, v, w are linear in t, and that

du = xdt, dv = ydt, dw = zdt.

The remark just made shows that(
x
∂ϕ

∂u
+ y

∂ϕ

∂v
+ z

∂ϕ

∂w

)(n)

= m(m− 1) · · · (m− n− 1)tm−nϕ(x, y, z).

If we now set t = 1, u, v, w reduce to x, y, z, and any term of the development
of the first member,

Apqr
∂nϕ

∂up∂vq∂wr
xpyqzr,

becomes

Apqr
∂nϕ

∂xp∂yq∂zr
xpyqzr,

whence we may write, symbolically,(
x
∂ϕ

∂x
+ y

∂ϕ

∂y
+ z

∂ϕ

∂z

)(n)

= m(m− 1) · · · (m− n− 1)tm−nϕ(x, y, z),

which reduces, for n = 1, to the well-known formula

mϕ(x, y, z) = x
∂ϕ

∂x
+ y

∂ϕ

∂y
+ z

∂ϕ

∂z
.

Various notations. We have then, altogether, three systems of nota-
tion for the partial derivatives of a function of several variables, — that of
Leibniz, that of Lagrange, and that of Cauchy. Each of these is somewhat
inconveniently long, especially in a complicated calculation. For this reason
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various shorter notations have been devised. Among these one first used by
Monge for the first and second derivatives of a function of two variables is
now in common use. If z be the function of the two variables x and y, we
set

p =
∂z

∂x
, q =

∂z

∂y
, r =

∂2z

∂x2
, s =

∂2z

∂x∂y
, t =

∂2z

∂y2
,

and the total differentials dz and d2z are given by the formulae

dz = pdx+ qdy,

d2z = rdx2 + 2sdxdy + tdy2.

Another notation which is now coming into general use is the following. Let
z be a function of any number of independent variables x+1, x2, x3, . . . , xn;
then the notation

pα1α2...αn =
∂α1+α2+···+αn

∂xα1
1 ∂xα2

2 · ∂xαn
n

is used, where some of the indices α1, α2, . . . , αn may be zeros.
19. Applications. Let y = f(x) be the equation of a plane curve C with

respect to a set of rectangular axes. The equation of the tangent at a point
M(x, y) is

Y − y = y′(X − x).

The slope of the normal, which is perpendicular to the tangent at the point
of tangency, is −1/y′; and the equation of the normal is, therefore,

(Y − y)y′ + (X − x) = 0

Let P be the foot of the ordinate of the point M , and let T and N be
the points of intersection of the x axis with the tangent and the normal,
respectively. The distance PN is called the subnormal; PT , the subtangent;
MN the normal; and MT , the tangent.

From the equation of the normal the abscissa of the point N is x +
yy′, whence the subnormal is ±yy′. If we agree to call the length PN the
subnormal, and to attach the sign + or the sign − according as the direction
PN is positive or negative, the subnormal will always be yy′ for any position
of the curve C. Likewise the subtangent is −y/y′. The lengths MN and
MT are given by the triangles MPN and MPT :

MN =

√
MP

2
+ PN

2
= y
√
1 + y′2,

MN =

√
MP

2
+ PT

2
=
y

y′

√
1 + y′2.

Various problems may be given regarding these lines. Let us find, for in-
stance, all the curves for which the subnormal is constant and equal to a
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given number a. This amounts to finding all the functions y = f(x) which
satisfy the equation yy′ = a. The left-hand side is the derivative of y2/2,
while the right-hand side is the derivative of ax. These functions can there-
fore differ only by a constant; whence

y2 = 2ax+ C.

which is the equation of a parabola along the x axis. Again, if we seek the
curves for which the subtangent is constant, we are led to write down the
equation y′/y = 1/a; whence

log y =
x

a
+ logC, or y = Ce

x
a ,

which is the equation of a transcendental curve to which the x axis is an
asymptote. To find the curves for which the normal is constant, we have the
equation

y
√

1 + y′2 = a,

or
yy′√
a2 − y2

= 1.

The first member is the derivative of −
√
a2 − y2; hence

−
√
a2 − y2 = x+ C,

or

(x+ C)2 + y2 = a2,

which is the equation of a circle of radius a, whose center lies on the x axis.

The curves for which the tangent is constant are transcendental curves,
which we shall study later.

Let y = f(x) and Y = F (x) be the equations of two curves C and C ′

and let M , M ′ be the two points which correspond to the same value of x.
In order that the two subnormals should have equal lengths it is necessary
and sufficient that

Y Y ′ = ±yy′;

that is, that Y 2 = ±y2 + C, where the double sign admits of the normals’
being directed in like or in opposite senses. This relation is satisfied by the
curves

y2 =
b2

a2
(a2 − x2), Y 2 =

b2x2

a2
,

and also by the curves

y2 =
b2

a2
(x2 − a2), Y 2 =

b2x2

a2
,
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which gives an easy construction for the normal to the ellipse and to the
hyperbola.

EXERCISES
1. Let ρ = f(θ) be the equation of a plane curve in polar coordinates.

Through the pole O draw a line perpendicular to the radius vector OM , and
let T and N be the points where this line cuts the tangent and the normal.
Find expressions for the distances OT , ON , MN , and MT in terms of f(θ)
and f ′(θ),

Find the curves for which each of these distances, in turn, is constant.
2. Let y = f(x), z = ϕ(x) be the equations of a skew curve Γ, i.e. of a

general space curve. Let N be the point where the normal plane at a point
M , that is, the plane perpendicular to the tangent at M , meets the z axis;
and let P be the foot of the perpendicular from M to the z axis. Find the
curves for which each of the distances PN and MN , in turn, is constant.

[Note, These curves lie on paraboloids of revolution or on spheres.]
3. Determine an integral polynomial f(x) of the seventh degree in x,

given that f(x)+1 is divisible by (x−1)4 and f(x)−1 by (x+1)4. Generalize
the problem.

4. Show that if the two integral polynomials P and Q satisfy the relation√
1− P 2 = Q

√
1− x2,

then
dP√
1− P 2

=
ndz

1− x2
,

where n is a positive integer.
[Note, From the relation

1− P 2 = Q2(1− x2)

it follows that
−2PP ′ = Q[2Q′(1− x2)− 2Qx].

The equation (a) shows that Q is prime to P ; and (b) shows that P ′ is
divisible by Q.]

5∗. Let R(x) be a polynomial of the fourth degree whose roots are all
different, and let x = U/V be a rational function of t, such that

√
R(x) =

P (t)

Q(t)

√
R1(t),

where R1(t) is a polynomial of the fourth degree and P/Q is a rational
function. Show that the function U/V satisfies a relation of the form

dx√
R(x)

=
kdt√
R1(t)
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where k is a constant. [Jacobi.]
[Note. Each root of the equation R(U/V ) = 0, since it cannot cause

R′(x) to vanish, must cause UV ′ − V U ′ and hence also dx/dt to vanish.]
6∗. Show that the nth derivative of a function y = ϕ(u), where u is a

function of the independent variable x, may be written in the form

(a)
dny

dxn
= A1ϕ

′(u) +
A2

1 · 2
ϕ′′(u) + · · ·+ An

1 · 2 · · ·n
ϕ(n)(u),

where

Ak =
dnuk

dxn
− k

1
u
dnuk−1

dxn
+
k(k − 1)

1 · 2
u2
dnuk−2

dxn
+ · · ·

+ (−1)k−1kuk−1d
nu

dxn
(k = 1, 2, . . . , n).

(b)

[First notice that the nth derivative may be written in the form (a), where
the coefficients A1, A2, . . . , An are independent of the form of the function
ϕ(u). To find their values, set ϕ(u) equal to u, u2, . . . , un successively, and
solve the resulting equations for A1, A2, . . . , An. The result is the form (b).]

7∗. Show that the nth derivative of ϕ(x2) is

dnϕ(x2)

dxn
= (2x)nϕ(n)(x2) + n(n− 1)(2x)n−2ϕ(n−1)(x2) + · · ·

+
n(n− 1) · · · (n− 2p+ 1)

1 · 2 · · · p
(2x)n−2pϕ(n−p)(x2) + · · · ,

where p varies from zero to the last positive integer not greater than n/2,
and where ϕ(i))x2) denotes the ith derivative with respect to x. Apply this
result to the functions e−x2

, arc sinx, arc tanx.
8∗. If x = cosu, show that

dm−1(1− x2)m− 1
2

dxm−1
= (−1)m−1 1 · 3 · 5 · · · (2m− 1)

m
sinmu.

[Olinde Rodrigues.]
9. Show that Legendre’s polynomial,

Xn =
1

2 · 4 · 6 · · · 2n
dn

dxn
(x2 − 1)n,

satisfies the differential equation

(1− x2)
d2Xn

dx2
− 2x

dXn

dx
+ n(n+ 1)Xn = 0.

Hence deduce the coefficients of the polynomial.
10. Show that the four functions

y1 = sin(narc sinx), y3 = sin(narc cosx),
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y2 = cos(narc sinx), y4 = cos(narc cosx),

satisfy the differential equation

(1− x2)y′′ − xy′ + n2y = 0.

Hence deduce the developments of these functions when they reduce to poly-
nomials.

11∗. Prove the formula

dn

dxn
(xn−1e

1
x ) = (−1)n

e
1
x

xn+1
.

[Halphen.]

12. Every function of the form z = xϕ(y/x) +ψ(y/x) satisfies the equa-
tion

rx2 + 2sxy + ty2 = 0,

whatever be the functions ϕ and ψ.

13. The function z = xϕ(x+ y) + yψ(x+ y) satisfies the equation

r − 2s+ t = 0,

whatever be the functions ϕ and ψ.

14. The function z = f [x+ϕ(y)] satisfies the equation ps = qr, whatever
be the functions f and ϕ.

15. The function z = xnϕ(y/x) + y−nψ(y/x) satisfies the equation

rx2 + 2sxy + ty2 + px+ qy = n2z,

whatever be the functions ϕ and ψ.

16. Show that the function

y = |x− a1|ϕ1(x) + |x− a2|ϕ2(x) + · · ·+ |x− an|ϕn(x),

where ϕ1(x), ϕ2(x), . . . , ϕn(x) together with their derivatives, ϕ′1(x), ϕ
′
2(x), . . . , ϕ

′
n(x),

are continuous functions of x, has a derivative which is discontinuous for
x = a1, a2, . . . , an.

17. Find a relation between the first and second derivatives of the func-
tion z = f(x1, u), where u = ϕ(x2, x3); x1, x2, x3 being three independent
variables, and f and ϕ two arbitrary functions.

18. Let f ′(x) be the derivative of an arbitrary function f(x). Show that

1

u
d2udx2 =

1

v

d2v

dx2
.

where u = [f ′(x)]−
1
2 and v = f(x)[f ′(x)]−

1
2 .
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19∗. The nth derivative of a function of a function u = ϕ(y), where
y = Ψ(x), may be written in the form

Dnxϕ =
∑ n!

i!j! · · · k!
Dp

yϕ

(
Ψ′

1

)i( Ψ′′

1 · 2

)j ( Ψ′′′

1 · 2 · 3

)h

· · ·

(
Ψ(l)

1 · 2 · · · l

)k

,

where the sign of summation extends over all the positive integral solutions
of the equation i+ 2j + 3h+ · · ·+ lk = n, and where p = i+ j + · · ·+ k.

[Faa de Bruno, Quarterly Journal of Mathematics, Vol. I, p. 869.]


