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1 Examples of Lie Groups

We first of all give some examples of simple Lie groups. Each example given below
is the simplest possible example of a given class of Lie group. They also illustrate
properties (or lack of them) important for analysis on Lie groups.

1. SL(2,R), the group of 2× 2 matrices of determinant 1. This is a semisimple
Lie group.

2. The Heisenberg group, H. This group has several representations. For ex-
ample, it can be represented as the group of matrices 1 x z

0 1 y
0 0 1

 , x, y, z ∈ R.

Perhaps, for calculations, a more useful representation is given by the group
action

(x1, y1, z1) ◦ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1y2 − x2y1).

The Heisenberg group is the simplest example of a nilpotent Lie group.

3. The “ax + b” group, of invertible affine transformations of R3. This group
can be represented by matrices of the form(

a b
0 a−1

)
, a ∈ R\{0}, b ∈ R.

The “ax + b” group is the simplest example of a non-commutative solvable
group, the simplest example of a non-unimodular group, and the simplest
example of a Lie group with exponential growth i.e. the volume of a ball
in this group grows exponentially with the radius. Note that this group
sits inside SL(2,R), and it can be shown that SL(2,R) shares some of the
properties as the “ax+ b” group, for example exponential growth.

4. SO(3), the group of 3 × 3 orthogonal matrices of determinant 1. This is a
compact group.

5. The group of matrices cosα sinα x
− sinα cosα y

0 0 1

 , x, y ∈ R,−π < α ≤ π.

This group of matrices represents the motion group of the plane, and is the
simplest example of a non-nilpotent group of polynomial growth.

2



Lie groups are differentiable manifolds equipped with smooth group action.
Loosely, it is therefore natural to investigate “objects” that are invariant under
left or right translation by the group law. For example, the set of all left (or right)
invariant vector fields on a Lie group is defined to be the Lie algebra of a Lie group,
and a left (or right) invariant measure is said to be a left (or right) Haar measure
(see appendix for details).

Consider again the Heisenberg group, H, defined above. We can compute the
left invariant vector fields on H. We have

∂sf((s, 0, 0) ◦ (x, y, z)) = ∂sf(x+ s, y, z + sy),

= (∂x + y∂z)f.

Thus X = ∂x + y∂z is a left invariant vector field on H. Similarly,

∂sf((0, s, 0) ◦ (x, y, z)) = ∂sf(x, y + s, z − xs),
= (∂y − x∂z)f,

and

∂sf((0, 0, s) ◦ (x, y, z)) = ∂sf(x, y, z + s),

= ∂zf,

so that Y = ∂y − x∂z and Z = ∂z are also left invariant vector fields. We can also
compute the commutator [X, Y ], noting that partial derivatives commute,

[X, Y ] = (∂x + y∂z)(∂y − x∂z)− (∂y − x∂z)(∂x + y∂z)

= ∂x(−x∂z) + y∂z∂y − ∂y(y∂z) + x∂z∂x

= −2∂z

= −2Z.

Remark 1 In Euclidean space, it is clear that if we have just two directions to
travel in, we will always remain in a 2-dimensional plane. This is not true in the
case of the Heisenberg group. Indeed, if we travel a distance t, first in the direction
of the vector field X, then in direction Y , then in direction −X and finally in
direction −Y , then by the formula

exp(tX) exp(tY ) exp(−tX) exp(−tY ) ≈ t2[X, Y ],

we see that in effect we have moved a distance t2 in the direction [X, Y ]. But
by above, we have therefore moved in the direction Z. Thus, moving in just two
directions, we can get to any point in the group.
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2 Carnot-Carathéodory Distance

Let X1, . . . , Xm be smooth right invariant vector fields on a finite dimensional Lie
group G. We say X1, . . . , Xm satisfy Hörmander’s condition if

X1, . . . , Xm, [X1, X2], . . . , [X1, Xm]+ all repeated commutators up to order k <∞

span the tangent space at the identity e. Note that G is finite dimensional, so this
tangent space is also finite dimensional.

Suppose X1, . . . , Xm satisfy Hörmander’s condition. We say a smooth curve
γ : [0, 1]→ G is admissible if ∃ a1, . . . , am, such that

γ′(t) =
m∑
i=1

ai(t)Xi(γ(t))

i.e γ′(t) ∈ sp{X1(γ(t)), . . . , Xm(γ(t))}.
For such an admissible curve γ, define the length of γ in following way

|γ|2 = inf
a1,...,am

∫ 1

0

m∑
i=1

a2
i (t)dt.

Finally define the function d(x) = inf{|γ| : γ is admissible, γ(0) = e, γ(1) = x}.
This is the Carnot-Carathéodory distance of x from the identity, or the optimal
control distance, which generates the sub-Riemannian geometry on G.

Remark 2 The function d(x) is well defined by Chow’s theorem, which asserts
that there exists at least one admissible curve in G from the identity to x. For a
proof of Chow’s theorem see [2].

Remark 3 We can see that d(x · y) ≤ d(x) + d(y) using right invariance of the
vector fields. Indeed, let γ1 be an admissible curve from e to y, and γ2 be an
admissible curve from e to x. Then by right invariance γ2 ·y is an admissible curve
from y to x ·y, with length equal to |γ2|. Therefore γ, formed by γ1 followed by γ2 ·y
(re-parametrising), is an admissible curve from e to x · y. Since |γ| = |γ1| + |γ2|,
it is clear from the definition that d(x · y) ≤ |γ1| + |γ2|. Taking infimums over γ1

and γ2 gives us the result.

Now, define ∇f = (X1f, . . . , Xmf). We have

Proposition 1 |∇d| ≤ 1 a.e.
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Proof. Note that ∀ i, we have t→ exp(tXi) is an admissible curve, and hence
by definition d(exp(tXi)) ≤ t. Therefore, using Remark 3,

|d(xexp(tXi))− d(x)| ≤ t.

Thus d is Lipschitz in the direction Xi, and we can adjust Rademacher’s classical
theorem to the case of Lie groups (see appendix, and [4]), to get that d is almost
everywhere differentiable in direction Xi, and |Xid| ≤ 1 a.e. (with respect to the
measure induced on G by the Lebesgue measure, so that a set in G is null if and
only if its image in all coordinate charts is null in Rn).

We know that |Xid| ≤ 1 a.e., but to check that |∇d| ≤ 1 a.e. we must handle
all directions. Consider ∇d.(c1, . . . , cm) =

∑
ciXid, where

∑
c2
i = 1, and the ci’s

are rational.
We use the result that if |v.c| ≤ 1 for all c such that ci are rational and

∑
c2
i = 1

then |v| ≤ 1 a.e. Since |∇d.c| = (
∑
c2
i (Xid)2)

1
2 ≤ 1, the result follows.

�
Consider now B(r) = {x ∈ G : d(x) < r}, the unit ball in G with respect to

the distance d. We can recursively form subspaces

V1 = sp{X1, . . . , Xm}
Vj = Vj−1 + [V1, Vj−1], for j ≥ 2,

where [V1, Vj−1] = sp{[Y, Z] : Y ∈ V1, Z ∈ Vj−1}. By Hörmander’s condition, there
exists smallest n s.t Vn is the tangent space at the identity, i.e. Vn is the Lie
algebra of G.

Set d1 = dimV1, di = dimVi − dimVi−1 for i = 2, . . . , n. Then it can be shown
that (see [3])

Vol B(r) ≈ rd1+···+dn .

For the Heisenberg group, H, it can be shown by direct computation that ∂B(r)
is not a smooth submanifold of H. Precisely it has a singularity in the vertical
direction Z.

Also note that
δs : (x, y, z) 7→ (sx, sy, s2z)

is a group homomorphism (called a dilation) on H. Therefore B(r) = δr(B(1)),
and Vol B(r) = r4Vol B(1).

We will concentrate on nilpotent Lie groups, but first of it is useful to look at
a more general group.
Example The“ax+ b” group has group law

(x1, y1) · (x2, y2) = (x1 + x2, e
x2y1 + y2).
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Now we compute the left invariant vector fields, as before

∂sf((s, 0) · (x, y)) = ∂sf(s+ x, y) = ∂xf

∂sf((0, s) · (x, y)) = ∂sf(x, sex + y) = ex∂yf.

Hence X = ∂x and Y = ex∂y are the 2 left invariant vector fields, (and it is clear
that this group is not nilpotent).

Suppose we move a distance l in the Y direction to a point denoted by (0, l),
as represented in following diagram.

Y

X

6
(0, l)

-

log l

6

1

�
log l

This is clearly the same as moving a distance log l in the X direction, then 1 in the
Y direction, then log l in the −X direction. So we can see that d((0, l)) ≤ 2 log l+1.
Hence, the shortest route from 0 to (0, l) is not necessarily found by going a distance
l in the Y direction, as in the Euclidean case. For example, if l = e2 it is clear
that it is shorter to take the alternative route, since we have

d((0, e2)) ≤ 2 log e2 + 1 = 5 < e2.

3 L2-Spaces and Weighted L2-Spaces

Let G be a Lie group and let X1, . . . , Xm be smooth right invariant vector fields
on G. Let dx be the left Haar measure on G (which is unique up to multiplying by
a constant). We take left invariant Haar measure here, since our vector fields are
right invariant (see below). Note that in the case of nilpotent Lie groups, any left
invariant Haar measure is also right invariant, and vice versa (i.e. the Lie group
is unimodular).
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Any right invariant vector field X generates a one parameter subgroup

{exp(tX) : t ∈ R}.

Moreover, for any f ∈ C∞(G), we have

Xf(x) = lim
s→0

f(exp(sX)x)− f(x)

s
.

Since, dx is left invariant, we have for all i∫
G
f(exp(sXi)x)g(x)dx =

∫
G
f(x)g(exp(−sXi)x)dx

and hence∫
G
Xif(x)g(x)dx =

∫
G

lim
s→0

f(exp(sXi)x)g(x)− f(x)g(x)

s
dx

=

∫
G

lim
s→0

f(x)g(exp(−sXi)x)− f(x)g(x)

s
dx

= −
∫
G
f(x) lim

s→0

g(exp(−sXi)x)− g(x)

−s
dx

= −
∫
G
f(x)Xig(x)dx.

So 〈Xif, g〉 = −〈f,Xig〉.
Define ∇f = (X1f, . . . , Xmf). ∇ can be treated as a closed operator from

L2(G) to L2(G,Cm), the set of vector valued L2 functions. Indeed ∇ defined on
compactly supported smooth functions is closable. Alternatively we get the same
operator if we define the domain of ∇ to be all L2 functions such that Xif is also
in L2 (as a weak derivative).

Then we define ∆ = ∇∗∇, which is clearly self-adjoint.

Remark 4 ∆ ≈ −
∑
X2
i , but we do not define it in this way, since it is not clear

that this is self-adjoint after closure. Later on we will see that we can indeed write
∆ = −

∑
X2
i , but for now we can develop the theory by defining ∆ in this way.

Remark 5 This definition makes sense and give a self-adjoint operator in the
more general setting of manifolds.

Consider the equation
∂tf = −∆f. (∗)
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In L2 we can use spectral theory to see that for a self adjoint operator L, we have

e−tL =

∫ ∞
0

e−tλdE(λ)

⇒ ∂te
−tL =

∫ ∞
0

−λe−tλdE(λ) = −L
∫ ∞

0

e−tλdE(λ)

= −Le−tL.

Therefore, since ∆ is self adjoint by definition, we have that f(t, x) = e−t∆f0(x)
solves equation (∗), subject to condition f(0, x) = f0(x). Note the semigroup
relations

e−t1∆e−t2∆ = e−(t1+t2)∆ = e−t2∆e−t1∆,

and

∂te
−t∆f = lim

s→0

e−(t+s)∆f − e−t∆f
s

= −∆e−t∆f.

Now consider the family of inner products on L2(G) defined by

〈f, g〉s = 〈f, esdg〉

where d is the Carnot-Carathéodory distance defined in the previous section. We
will study these for s < 0.

We show that esdg, remains in the domain of ∇, so that it makes sense to
consider Xi(e

sdg). It suffices to show this for compactly supported smooth g,
since passing to the closure this will give result on whole domain of ∇. We first
approximate d by convolutions (see section 4), by noting that there exist smooth
φn such that dn = d ∗ φn tends to d locally in L2 and ∇dn tends to ∇d locally in
L2.

Passing to a subsequence we may assume that ∇dn tends to ∇d almost every-
where, and so, using the fact that g has compact support in L2,

esdng → esdg uniformly,

and
∇esdng → ∇esdg almost everywhere.

Now ∇esdng is bounded (since s < 0), so ∇esdng → ∇esdg in L2. Since ∇ is
closed, therefore esdg belongs to the domain of ∇. Note that as a by product we
also get the Leibniz formula.

Now we can compute

〈Xif,Xi(e
sdg)〉 = 〈Xif, s(Xid)esdg〉+ 〈Xif, e

sdXig〉
= 〈Xif, s(Xid)g〉s + 〈Xif,Xig〉s,
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and so

〈∆f, f〉s = 〈∆f, esdf〉
= 〈∇f,∇(esdf)〉

=
m∑
i=1

〈Xif,Xi(e
sdf)〉

=
m∑
i=1

〈Xif,Xif〉s + s

m∑
i=1

〈Xif, (Xid)f〉s

= ‖∇f‖2
s + s〈∇f, (∇d)f〉s.

So
|Im 〈∆f, f〉s| = |s| |Im 〈∇f, (∇d)f〉s| ≤ |s| ‖∇f‖s‖(∇d)f‖s

and since s < 0
Re 〈∆f, f〉s ≥ ‖∇f‖2

s + s‖∇f‖s‖(∇d)f‖s
Now

|s|‖∇f‖s‖(∇d)f‖s ≤ ‖∇f‖2
s/2 + s2/2‖f‖2

s

using the inequality ab ≤ a2/2 + b2/2 and fact that |∇d| ≤ 1. So

Re 〈∆f, f〉s ≥ ‖∇f‖2
s + s‖∇f‖s‖(∇d)f‖s

≥ ‖∇f‖2
s − ‖∇f‖2

s/2− s2/2‖f‖2
s

= ‖∇f‖2
s/2− s2/2‖f‖2

s,

which gives
Re 〈∆f, f〉s + s2/2‖f‖2

s ≥ ‖∇f‖2
s/2.

Finally

|Im 〈∆f, f〉s| ≤ ‖∇f‖2
s/2 + s2/2‖f‖2

s

≤ Re 〈∆f, f〉s + s2/2‖f‖2
s + s2/2‖f‖2

s

= Re 〈∆f, f〉s + s2‖f‖2
s. (1)

Consider now the semigroup e−(∆+s2)t.
Note 〈(∆ + s2)f, f〉s ∈ Sπ

4
, where Sπ

4
= {z ∈ C : arg(z) ∈ [−π

4
, π

4
]}. Indeed,

Re 〈(∆ + s2)f, f〉s = Re 〈∆f, f〉s + s2‖f‖2
s

≥ |Im 〈∆f, f〉s| =
∣∣Im 〈(∆ + s2)f, f〉s

∣∣
by above. This shows that the semigroup e−(∆+s2)t is analytic in the sector Sπ

4
.
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We can use (1) to estimate the s-norm of the semigroup by the following cal-
culation.

∂t‖e−t(∆+s2)f‖2
s = ∂t〈e−t(∆+s2)f, e−t(∆+s2)f〉s

= −2Re 〈(∆ + s2)e−t(∆+s2)f, e−t(∆+s2)f〉s
= −2(Re 〈∆g, g〉s + s2‖g‖2

s), where g = e−t(∆+s2)f

≤ −2|Im 〈∆f, f〉s| ≤ 0.

Therefore ‖e−t(∆+s2)f‖2
s ≤ ‖f‖2

s, and so

‖e−t∆‖s ≤ ets
2

.

Finally, by duality of L2(G, esddx) and L2(G, e−sddx), we have that this result
also holds for s > 0.

4 Convolutions

Let µ1 and µ2 be finite measures on a Lie group G. Define∫
G
h(x)d(µ1 ∗ µ2)(x) =

∫
G×G

h(y · z)dµ1(y)dµ2(z).

It is clear that µ1 ∗ (µ2 ∗ µ3) = (µ1 ∗ µ2) ∗ µ3, and

‖µ1 ∗ µ2‖ ≤ ‖µ1‖‖µ2‖

with equality for positive measures (where the norm is total variation norm on
measures).

We use left Haar measure to identify functions with measures and in that way
define convolutions of functions∫

G
h(x)(f1 ∗ f2)(x)dx =

∫
G×G

h(y · z)f1(y)f2(z)dydz.

Putting z = y−1x, and using left invariance we have∫
G
h(x)(f1 ∗ f2)(x)dx =

∫
G×G

h(x)f1(y)f2(y−1x)dydx.

So

f1 ∗ f2(x) =

∫
G
f1(y)f2(y−1x)dy.
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Therefore, we have (δx ∗ f)(y) = f(x−1y), where δx is the Dirac delta func-
tion. Moreover, neglecting the role of the modular function for notational sake, or
assuming the Lie group is unimodular, (f ∗ δx)(y) = f(yx−1). Hence

Xf(y) = lim
s→0

f(exp(sX)y)− f(y)

s
= lim

s→0

(δexp(sX) ∗ f − f)(y)

s
.

Remark 6 We can use convolutions to smooth functions on a Lie group, as in
the Euclidean case. Indeed, it can be shown that if f is in Lp and ϕ ∈ C∞(G),
then f ∗ ϕ is smooth. We sketch this argument.

Define the function (Rgf)(x) = f(xg). By the continuity of the modular func-
tion, if K is a compact set, there exists C such that

‖Rgf‖Lp ≤ C‖f‖Lp .

So if ϕ ∈ L1 and suppϕ ⊂ K, then using the two identities f ∗ δg = m(g)Rg−1f ,
where m is the modular function, and ϕ =

∫
ϕ(g)δgdg for ϕ ∈ L1, we have

‖f ∗ ϕ‖ = ‖
∫
ϕ(g)f ∗ δg‖

≤ ‖ϕ‖L1C‖f‖Lp .

We can similarly show that all right derivatives of f ∗ϕ are bounded, and using the
same methods described in section 7 below, this can be used to show smoothness of
f ∗ ϕ.

Remark 7 By definition, convolution is only defined for integrable functions.
However, we have the the inequality

‖f1 ∗ f2‖L∞ ≤ ‖f1‖L1‖f2‖L∞

and hence for p ≥ 1
‖f1 ∗ f2‖Lp ≤ ‖f1‖L1‖f2‖Lp ,

and so we can define convolutions for functions in all Lp spaces.

5 The Heat Kernel

Theorem 1 ∆ is essentially self adjoint on C∞0 (G) i.e. the closure of ∆ defined
on C∞0 (G) by ∆ = −

∑
X2
i in L2(G) is self adjoint.
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Proof. We recall the result that if the range of (I + ∆) is dense in L2(G),
then ∆ is essentially self adjoint (see appendix).

So suppose (∆ + I)(C∞0 (G)) is not dense in L2(G). Then there exists f 6= 0 ∈
L2(G) such that

〈(∆ + I)ϕ, f〉 = 0

for all ϕ ∈ C∞0 (G).
We may assume that f is smooth (otherwise replace f by f ∗ η for η ∈ C∞0 (G)

such that f ∗ η approximates f , and use the fact that ∆ is invariant under right
translation).

Look at ψ2
Rf where

ψR(x) =

{
1− d(x)

R
, when d(x) ≤ R

0, otherwise.

Then |∇ψR(x)| ≤ 1
R

, and ψ2
Rf ∈ D(∇). By assumption we have

0 = 〈(∆ + I)ϕ, f〉 = 〈ϕ, f〉+ 〈∇ϕ,∇f〉

for all ϕ ∈ C∞0 (G). Let ϕn ∈ C∞0 (G) be such that ϕn → ψ2
Rf in L2(G), and

∇ϕ→ ∇(ψ2
Rf) in L2(G). Note that we can do this using convolutions, since ψ2

Rf
is compactly supported. Hence by continuity we have

0 = 〈ψ2
Rf, f〉+ 〈∇(ψ2

Rf),∇f〉
= 〈ψ2

Rf, f〉+ 2〈(∇ψR)ψRf,∇f〉+ 〈ψ2
R∇f,∇f〉

= ‖ψRf‖2 + 2〈(∇ψR)f, ψR∇f〉+ ‖ψR∇f‖2 (2)

Now since|∇ψR(x)| ≤ 1
R

,

|〈(∇ψR)f, ψR∇f〉| ≤
1

R
‖f‖‖ψR∇f‖ ≤

1

2R2
‖f‖2 +

1

2
‖ψR∇f‖2,

again using the inequality ab ≤ a2/2 + b2/2.
From (2) we see that 〈(∇ψR)f, ψR∇f〉 is real, and so therefore we have

〈(∇ψR)f, ψR∇f〉 ≥ −
1

2R2
‖f‖2 − 1

2
‖ψR∇f‖2.

Hence

0 ≥ ‖ψRf‖2 + 2(− 1

2R2
‖f‖2 − 1

2
‖ψR∇f‖2) + ‖ψR∇f‖2

= ‖ψRf‖2 − 1

R2
‖f‖2.

Taking the limit as R → ∞ in this we see that we have 0 ≥ ‖f‖2, and thus
f = 0, which is a contradiction.

�
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Corollary 1 By the above theorem, we can in fact write ∆ = −
∑
X2
i .

In section 3 we defined exp(−t∆) not only on L2(G) but also on the weighted
space L2(esddx). Let us note that if s is big enough than the weighted space
L2(e−sddx) contains L∞. So the semigroup is well defined on L∞. Similarely, if λ
is large enough

(∆ + λI)−1 =

∫ ∞
0

exp(−t∆)e−tλdt

is continous from L∞ to L2(e−sddx). We are going to prove that in fact (∆+λI)−1

and exp(−t∆) are contractions on L∞.
Now if f is real and smooth, and f(x0) is maximal, then clearly by the above

corollary
(∆f)(x0) ≥ 0.

So
‖(∆ + λI)f‖L∞ ≥ λ‖f‖L∞ ,

for all smooth functions f that are less than any given ε outside a big enough ball,
and λ > 0. Indeed, if f is such a function then there exists an x0 such that f(x0)
is maximal and then

(∆f + λf)(x0) = ∆f(x0) + λf(x0) ≥ λf(x0) = λ‖f‖L∞ ,

and so ‖(∆ + λI)f‖L∞ ≥ λ‖f‖L∞ . Then

‖(∆ + λI)−1(∆ + λI)f‖L∞ = ‖f‖L∞ ≤
1

λ
‖(∆ + λI)f‖L∞

for f in the range of ∆ + λI. Since ∆ commutes with right translations range
of ∆ + λI contains all g = f ∗ ϕ where f is in the range of ∆ + λI and ϕ ∈
C∞0 (G). By density of the range of ∆+λI in L2(G) this implies that the inequality
above remains valid for f = g ∗ ϕ with g ∈ L2(G) and ϕ ∈ C∞0 (G). Next,
f ∈ L2(G)∩L∞(G) can be approximated by convolutions. Finally, for all f ∈ L∞
we can find a sequence of fn ∈ L2(G) ∩ L∞(G) such that ‖fn‖L∞(G) → ‖f‖L∞(G)

and fn converges to f in L2(e−sddx), so

‖(∆ + λI)−1‖L∞ ≤
1

λ
⇒ ‖(t∆ + I)−1‖L∞ ≤ 1

for all t > 0.
We now define

exp(−t∆) = lim
n→∞

(I +
t

n
∆)−n.

Hence by above ‖ exp(−t∆)‖L∞ ≤ 1, i.e. is a contraction on L∞. Note that
∆1 = 0, so exp(−t∆)1 = 1. This together with ‖ exp(−t∆)‖L∞ ≤ 1 means that
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exp(−t∆) maps non-negative functions to non-negative functions. Indeed, let f
be a continuous function decaying at infinity, and suppose that f ≥ 0. Then since
e−t∆ is a contraction on L∞, we have

‖e−t∆(‖f‖∞ − f)‖∞ ≤ ‖‖f‖∞ − f‖∞
⇒ e−t∆‖f‖∞ − e−t∆f ≤ ‖‖f‖∞ − f‖∞
⇒ ‖f‖∞ − e−t∆f ≤ ‖‖f‖∞ − f‖∞
⇒ e−t∆f ≥ ‖f‖∞ − ‖‖f‖∞ − f‖∞,

where we used the fact that e−t∆1 = 1 to get that e−t∆‖f‖∞ = ‖f‖∞. Now since
f ≥ 0 we have ‖‖f‖ − f‖∞ ≤ ‖f‖∞, and therefore e−t∆f ≥ 0. So Ht = e−t∆ is a
Markov semigroup on continuous functions decaying at infinity, and is called the
heat diffusion semigroup.

It follows from the right invariance of ∆ that we can write

Htf = ρt ∗ f

where ρt is a non-negative measure. In the sequel we show that ρt is a function
which we call the heat kernel associated to ∆ on L2(G, dx).

We want to study this heat kernel, and our aim for the remainder of these notes
will be to deduce bounds for ρt(x), and then to look at its smoothness properties.
For a detailed treatment of the heat kernel in a general setting, see [1].

6 Two-sided Estimate for the Heat Kernel

In this section we closely follow [5] which should be referred to for the details.
Another account of these methods with more emphasis in Lie groups can be found
in [7]. We deduce that the so called scale-invariant parabolic Harnack principle
implies the heat kernel satisfies the following two sided Gaussian estimate

1

|B(e, t
1
2 )|
c1 exp

(
−d2(x)

c2t

)
≤ ρt(x) ≤ 1

|B(e, t
1
2 )|
c3 exp

(
−d2(x)

c4t

)
,

where B(x, r) is ball of radius r centered at x (= B(r) · x). In fact this two-sided
bound is equivalent to the parabolic Harnack principle and holds if and only if the
following two properties are satisfied:

• there exists a constant C such that volume growth has the following doubling
property

∀x ∈ G, ∀r > 0, |B(x, 2r)| ≤ C|B(x, r)|

14



• there exists a constant P such that the Poincaré inequality

∀x ∈ G, ∀r > 0,

∫
B(x,r)

∣∣f − AvB(x,r)f
∣∣2 dx ≤ Pr2

∫
B(x,2r)

|∇f |2 dx,

where AB(x,r)f is the average of f over the ball B(x, r), is satisfied.

We will also show that a very general class of Lie groups satisfy these two
conditions.

6.1 Poincaré Inequality

The Poincaré inequality states that∫
B(x,r)

∣∣f − AvB(x,r)f
∣∣2 dx ≤ Pr2

∫
B(x,2r)

|∇f |2 dx,

for all f ∈ C∞(B(x, r)) and some P > 0, where AvB(x,r)f is the average of f over
the ball B(x, r). One crucial aspect of the inequalities is that they are assumed to
hold for all f ∈ C∞(B(x, r)), instead of merely f ∈ C∞0 (B(x, r)). So the natural
question to ask is for what kind of Lie groups does this hold?

We have the following theorem.

Theorem 2 Suppose G is unimodular. Then

1. For all 0 < r ≤ 1 and all balls B of radius r, the Poincaré inequality

∀f ∈ C∞(B),

∫
B

|f − AvBf |2dx ≤ Pr2

∫
B

|∇f |2dx

is satisfied.

2. If there exists C such that the volume growth doubling condition is satisfied
then the Poincaré inequality

∀f ∈ C∞(B),

∫
B

|f − AvBf |2dx ≤ Pr2

∫
B

|∇f |2dx

is satisfied for all balls B of radius r > 0.

This theorem follows from the following lemma.

Lemma 1 If d(x) < r, then ‖(δx − δe) ∗ f‖Lp(B(e,r)) ≤ r‖∇f‖Lp(B(e,2r)).

15



Proof.
Let γ(s) be an admissible curve from e to x of length smaller then r.
Fix s0, and write γ(s) = γ(s0)(γ(s0)−1γ(s)). Then

‖∂s(δγ(s) ∗ f)‖Lp(B(e,r)) = ‖∂sδγ(s0)−1γ(s) ∗ f‖Lp(B(γ(s0),r))

and
∂s(δγ(s0)−1γ(s) ∗ f)(y) = ∂sf(γ(s)−1γ(s0)y).

Evaluated at s = s0 this is equal to (γ′(s0)f)(y) = −
∑
ai(s0)(Xif)(y). So

‖(δx − δe) ∗ f‖Lp(B(e,r)) ≤ ‖
∑

ai(s0)(Xif)(·)‖Lp(B(e,2r)) ≤ r‖∇f‖Lp(B(e,r)).

�
Now we can prove a variant of Poincaré inequality.
Proof. We want to prove:

‖f − AvB(e,r)f‖L2(B(e,r)) ≤ Pr‖∇f‖L2(B(e,4r)).

This inequality follows more general inequality, valid for all 1 ≤ p ≤ ∞:

‖f − AvB(e,r)f‖Lp(B(e,r)) ≤ Pr‖∇f‖Lp(B(e,4r)).

We will prove the inequality above using interpolation between p = 1 and p =∞.
Using the lemma with p =∞ we have for x ∈ B(x, r)

|f(x)− f(e)| ≤ ‖δx ∗ f − f‖L∞(B(e,r)) ≤ r‖∇f‖L∞(B(e,2r))

so

‖f − AvB(e,r)f‖L∞(B(e,2r)) ≤ ‖f − f(e)‖L∞(B(e,2r)) + |f(e)− AvB(e,r)f |

≤ 2‖f − f(e)‖L∞(B(e,2r)) ≤ 2r‖∇f‖L∞(B(e,2r))

≤ 2r‖∇f‖L∞(B(e,4r)).

For p = 1 we have

‖f − AvB(e,r)f‖L1(B(e,r)) ≤
1

|B(e, r)|

∫
B(e,r)×B(e,r)

|f(x)− f(y)|dxdy

=
1

|B(e, r)|

∫
B(e,r)

∫
B(y−1,r)

|f(gy)− f(y)|dgdy

≤ 1

|B(e, r)|

∫
B(e,2r)

∫
B(e,2r)

|f(gy)− f(y)|dydg
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=
1

|B(e, r)|

∫
B(e,2r)

‖δg ∗ f − f‖L1(B(e,2r))

≤ 1

|B(e, r)|

∫
B(e,2r)

2r‖∇f‖L1(B(e,4r))

= 2r
|B(e, 2r)|
|B(e, r)|

‖∇f‖L1(B(e,4r)).

The first equality is valid because the group is unimodular. The last inequality
follows from the lemma with p = 1. �

Remark 8 The Poincaré inequality as stated in 2 implies doubling property. Given
doubling property weaker version we gave above implies inequality in 2.

Note that the doubling property clearly implies that∣∣B(x, 2kr)
∣∣ ≤ Ck |B(x, r)|

which shows |B(x, r)| grows at a polynomial rate. Essentially this bounds the
dimension of the problem.

Relating this to our examples in the first section, we see the property holds
for the Heisenberg group, SO(3), and the motion group of the plane. In fact this
property is fairly straightforward to show for nilpotent Lie groups, using dilations.
For our two groups of exponential growth (the“ax + b” group and SL(2,R)), this
property is not true for all r, but the following restricted doubling condition is
satisfied:

∃R > 0 and C such that ∀x ∈ G,∀r ∈ (0, R), |B(x, 2r)| ≤ C|B(x, r)|.

Thus on small scales the result holds for these groups too. [7] should be referred
to for more details on the treatment of exponential growth Lie groups.

6.2 Local Sobolev Inequality

Very generally, we say that a Lie group G (of dimension n) satisfies a localized LP

Sobolev inequality with constant C(B) and exponent ν > n if, for any geodesic
ball B and all f ∈ C∞0 (B)(∫

|f |qdx
)p/q

≤ C(B)
r(B)p

|B|

∫
(|∇f |p + r(B)−p|f |p)dx

where q = pν/(ν − p), and r(B) is radius of ball B.
The main result we need is the following.
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Theorem 3 Fix 1 ≤ p <∞ and 0 < R ≤ ∞. Assume that G satisfies a scale in-
variant Lp Poincaré inequality up to radius R, and assume further that G satisfies
the restricted doubling condition

∀x ∈ G,∀r ∈ (0, R), |B(x, 2r)| ≤ C|B(x, r)|.

Then for any K > 1, there exist ν > p and D such that for any ball B of radius
less than KR, (∫

|f |pν/(ν−p)dx
)(ν−p)/ν

≤ D(B)
r(B)p

|B|

∫
|∇f |pdx.

In other words the Poincaré inequality and the restricted doubling property
imply a family of local Sobolev inequalities. Therefore by section 6.1 we have that
any unimodular Lie group which satisfies the restricted doubling condition satisfy
a family of local Sobolev inequalities.

Remark 9 It can be shown that local Sobolev inequalities imply certain upper
bounds on the heat kernel. However, Gaussian lower bounds cannot be obtained
from such Sobolev inequalities alone. The lower bound estimate we are aiming for
depends crucially on the Poincaré inequality.

6.3 Scale-invariant Parabolic Harnack Inequality

For any x ∈ G and s ∈ R, r > 0, let Q = Q(x, s, r) be the cylinder

Q(x, s, r) = (s− r2, s)×B(x, r).

Let Q+, Q− be respectively the upper and lower sub-cylinders

Q+ = (s− (1/4)r2, s)×B(x, (1/2)r)

Q− = (s− (3/4)r2, s− (1/2)r2)×B(x, (1/2)r)

We say that G satisfies a scale invariant parabolic Harnack principle if there exists
a constant A such that for any x ∈ G, s ∈ R, r > 0 and any positive solution u of
(∂t + ∆)u = 0 in Q = Q(x, s, r) we have

sup
Q−

{u} ≤ A inf
Q+

{u}.

It turns out this scale-invariant Harnack principle carries a lot of information.
In particular we have the following important theorem.

Theorem 4 Fix 0 < R ≤ ∞ and consider the following properties:
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1. There exists P such that for any ball B = B(x, r), x ∈ G, 0 < r < R, and
for all f ∈ C∞(B),∫

B

|f − AvBf |2dx ≤ Pr2

∫
B

|∇f |2dx.

2. There exists C such that, for any ball B = B(x, r), x ∈ G, 0 < r < R,

|B(x, 2r)| ≤ C|B(x, r)|.

3. There exists a constant A such that, for any ball B = B(x, r), x ∈ G, 0 <
r < R and for any smooth positive solution u of (∂t+∆)u = 0 in the cylinder
(s− r2, s)×B(x, r), we have

sup
Q−

{u} ≤ A inf
Q+

{u}.

with

Q+ = (s− (1/4)r2, s)×B(x, (1/2)r)

Q− = (s− (3/4)r2, s− (1/2)r2)×B(x, (1/2)r).

Then the conjunction of 1 and 2 is equivalent to 3.

Our final result in this section is the following.

Theorem 5 Fix 0 < R ≤ ∞. The heat kernel ρt(x) satisfies the two-sided Gaus-
sian inequality

1

|B(e, t
1
2 )|
c1 exp

(
−d2(x)

c2t

)
≤ ρt(x) ≤ 1

|B(e, t
1
2 )|
c3 exp

(
−d2(x)

c4t

)
for all x ∈ G and t ∈ (0, R) if and only if G satisfies a scale-invariant parabolic
Harnack principle.

Corollary 2 Combining Theorems 2, 4 and 5, we therefore have that the heat
kernel ρt on any unimodular Lie group which satisfies the restricted doubling con-
dition, satisfies the two-sided Gaussian inequality described above.
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7 Smoothness of the Heat Kernel

Let X1, . . . , Xm be right invariant vector fields on a connected Lie group G which
generate the Lie algebra i.e. which satisfy Hörmander’s condition, and let ∆ =
−
∑
X2
i , as above. Let d be the Carnot-Carathéodory distance from e. From

section 3 we have that e−t∆ acts on the weighted L2 space L2(esd) as an analytic
semigroup in a sector. We can therefore estimate the derivative of this semigroup
to get that ∑

i

‖Xie
−t∆f‖L2(esd) ≤ ct,s‖f‖L2(esd). (3)

for some constant ct,s, which grows exponentially with t. Indeed, using our estimate
‖e−t∆‖s ≤ ets

2
from section 3, we can estimate ‖∆e−t∆f‖L2(esd), and then since

∆ = −
∑
X2
i and using integration by parts, we get the result. Cauchy’s integral

formula shows that result holds in the complex sector.

Remark 10 In these notes we consider ∆ with second order terms only. To con-
sider a ∆ with first order drift terms as well, one needs more complicated arguments
than the ones we present here.

Remark 11 The route we take here to get smoothness of the heat kernel avoids
the use of Hörmander’s theorem. However, it should be noted that Hörmander’s
theorem gives us smoothness of the heat kernel as a direct consequence of the hy-
poellipticity of ∆.

7.1 Left and Right Derivatives

We want now to compare the left and right derivatives of a smooth function f .
Assume X is a right invariant vector field, and let γ be a curve with γ(0) = e such
that γ′(0) = X. Then

(Xf)(g) = ∂sf(γ(s)g)|s=0 = ∂s(gg
−1γ(s)g)|s=0

= ∂sf(gAg−1γ(s))|s=0

where, for g, x ∈ G, Agx = g−1xg. Thus Ag is a smooth map G→ G.
Let Adg be the derivative of Ag with respect to x at the identity e (treating

G as a differentiable manifold), so that Adg is an isomorphism of Lie algebras,
Adg : g→ g.

For right invariant vector field X ∈ g ∼= TeG, we will denote the corresponding
left invariant vector field X̃. Then by the calculation above we have

(Xf)(g) = ∂sf(gAg−1γ(s))|s=0 = Ãdg−1Xf(g). (4)
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Lemma 2 We can introduce a norm on TeG (as it is a finite dimensional vector
space) and define the norm of Adg. Then one has that

‖Adg‖ ≤ ecd(g) (5)

for some constant c.

Proof. Fix a scalar product on the Lie algebra (TeG).
Let γ be an admissible curve joining e with g. We may re-parametize γ such

that γ′(s) =
∑
ai(s)Xi and

∑
ai(s)

2 = 1. With respect to our fixed scalar product
|γ′(s)| ≤ C1. Ad is a smooth map and norm is submultiplicative, so

∂s‖Adγ(s)‖ ≤ ‖DAdγ(s)‖|γ′(s)|

≤ ‖Adγ(s)‖‖DAde‖|γ′(s)| ≤ c‖Adγ(s)‖

where D is the full derivative, and c is some constant. Therefore

∂s log ‖Adγ(s)‖ ≤ c,

⇒ log ‖Adγ(s)‖ ≤ cs,

⇒ ‖Adγ(s)‖ ≤ exp(cs).

Note that norm is a Lipschitz function, so all the functions above are absolutely
continuous, and such that the differential inequalities make sense a.e. Hence the
final claims holds for all s.

Recall that d(g) is an infimum of s such that γ(s) = g. Hence we also have

‖Adg‖ ≤ exp(cd(g)),

as required. �
The map g 7→ Adg is a map of Lie groups

Ad : G→ GL(g),

where GL(g) is the general linear group of bijective linear transformations g→ g
with composition as the group operation, and is called the adjoint representation
of G.

We can then take the derivative of Ad at the identity to get a map of Lie
algebras,

ad : g→ gl(g)

where gl(g) is Lie algebra of all linear maps on g, which is called the adjoint
representation of g.
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It can be verified that

adXY = −[X, Y ] := −(XY − Y X)

for all X, Y ∈ g. Indeed, we have that that the exponential map is a diffeomor-
phism from a neighbourhood of 0 in g onto a neighbourhood of the identity in G,
and

adX =
d

dt
Ad(etX)

∣∣∣∣
t=0

.

Thus,

adX(Y ) =
d

dt
Ad(etX)(Y )

∣∣∣∣
t=0

=
d

dt
e−tXY etX

∣∣∣∣
t=0

= −[X, Y ].

Moreover, one can similarly show by direct computation thatAdexpX = exp(adX).
One can also check that the Jacobi identity on g is equivalent to the fact that

ad preserves Lie brackets i.e. ad is such that

ad[X,Y ] = [adX , adY ]

for all X, Y ∈ g (where on the right, the Lie bracket is the commutator of linear
maps on g). Thus we can recover the Lie bracket from ad.

Remark 12 Using the Campbell-Baker-Hausdorff formula and the exponential
mapping we can locally reconstruct the group multiplication from the Lie group
(see appendix). In general, for a simply connected Lie group there is exactly one
group that corresponds to the associated Lie algebra.

7.2 Sobolev Spaces

Returning to our heat semigroup e−t∆ we first recall that e−t∆f = ρt ∗ f for
functions f decaying at infinity. Therefore we have e−t∆δe = ρt ∗δe = ρt by section
4. Moreover,

e−t∆δe ∈ L2(esd)

⇒ Xie
−2t∆δe ∈ L2(esd),

by (3).
We also have, assuming the group is unimodular, that

sup |esd(f ∗ g)| ≤ ‖f‖L2(esd)‖g‖L2(esd). (6)

Note that if the group is not unimodular, we have a similar estimate involving
the modular function. This is related to Remarks 6 and 7. For general groups, by
Remark 7, convolution is bounded on L1×L∞ into L∞. If the group is unimodular,
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then convolution is also bounded on L∞×L1 (into L∞) and hence by interpolation,
is bounded from L2 × L2 into L∞. On general groups one has to incorporate
modular functions into the norm inequalities if the left factor is not in L1.

We therefore have that

Xie
−2t∆δe ∈ L2(esd)⇒ esd|Xie

−2t∆δe| ∈ L∞,

and so e−2tLδe is locally Hölder continuous with respect to the optimal control
distance.

We now need to introduce some Sobolev type spaces. Let Y1, . . . , Ym be right
invariant vector fields which form the basis of the Lie algebra. We introduce the
space H1,s, which is defined to be the closure of C∞(G) with respect to the norm(∑

i

‖esdYif‖2
L2(dx) + ‖esdf‖2

L2(dx)

)1/2

.

We now use interpolation theory (see [6] for details) to define Hε,s for all ε > 0,
(in the same way that we arrive at classical fractional Sobolev spaces on Rn).
The optimal control distance d is comparable with the Euclidean distance at the
identity, and so e−2t∆δe is Hölder continuous with respect to the Euclidean distance
at the identity. Thus by the classical theory of Sobolev spaces we have

‖e−2t∆δe‖Hε,s <∞

for some ε > 0. Indeed, this uniform estimate can be obtained by covering the Lie
group in small balls, shifting them to the origin, applying the classical theory at
the origin, and then shifting them back.

Now for left invariant vector fields, we can similarly introduce spaces H̃ε,s for

ε > 0. Define H̃ε,s to be the closure of C∞(G) with respect to the norm(∑
i

‖esdỸif‖2
L2(dx) + ‖esdf‖2

L2(dx)

)1/2

.

We then have
H1,s+c ⊂ H̃1,s.

Indeed, using (4) and (5) for f ∈ H1,s+c we have∑
i

‖esdX̃if‖2
L2 + ‖esdf‖2

L2 ≤
∑
i

‖esdecdXif‖2
L2 + ‖esdecdf‖2

L2 ,

and so f ∈ H̃s,1. Thus

e−2t∆δe ∈ H̃ε,s−c.
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Differentiation from the left and right commute, and hence

(Xif) ∗ (X̃jh) = XiX̃j(f ∗ h),

for all i, j. Thus, if f ∈ H1,s and h ∈ H̃1,s, then for all i, j we have by (6)

sup |esdXiX̃j(f ∗ h)| = sup |esd(Xif) ∗ (X̃j)| <∞,

and so esdXiX̃j(f ∗ h) ∈ L∞. Again using (4) and (5), this in turn implies that

for all i, j, e(s−c)dXiX̃j(f ∗ h) ∈ L2, from which we conclude that f ∗ h ∈ H̃2,s−c.
Finally, using interpolation theory once again, we have the result that if f ∈ Hε1,s

and h ∈ H̃ε2,s, then

f ∗ h ∈ H̃ε1+ε2,s−c.

Loosely, this shows that we get “more” smoothness by taking convolutions and
moving all the derivatives to one side. Then by induction we can see that for all
n,

e−2nt∆δe ∈ H̃nε,s−nc.

Thus we can estimate all derivatives of the heat kernel, and so we get smoothness.

7.3 A Better Estimate

We have by above that
|XIe−t∆δe| ≤ cs,te

−sd

where XI = XI1 . . . XI|I| , and XIk is a vector field generated by X1, . . . , Xm i.e.
XIk is formed by taking commutators of X1, . . . , Xm i.e. XIk . In fact we can
improve this estimate as t→ 0.

Consider new vector fields X ′i = t1/2Xi, and new operator ∆′ = −
∑

(X ′i)
2 =

t∆. Also define d′(x) = t−1/2d(x). As mentioned in section 2 we can recursively
form subspaces

V1 = sp{X1, . . . , Xm}
Vj = Vj−1 + [V1, Vj−1], for j ≥ 2.

This is called a filtration of the Lie algebra generated by X1, . . . Xm. Note that if
W1 = V1 and Wk is a complement to Vk−1 in Vk, then we have

Vk = W1 ⊕W2 ⊕ · · · ⊕Wk

for all k ≥ 1. In terms of this decomposition, we define a one parameter group of
dilations {ηt : t > 0} on ⊕kWk by

ηt(
∑

xk) =
∑

tkxk (xk ∈ Wk).
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After dilations, the vectors change, but one has uniform control on the Lie brackets.
Indeed, it can be shown that

|XIe−t∆δe| ≤ Ct−Q/2t−|I|/2 exp

(
−cd2

t

)
where Q =

∑
k kdimWk.

For more general functions, note that we have

∆−1 =

∫ ∞
0

e−t∆dt

and

(∆ + I)−1 =

∫ ∞
0

e−t(∆+I)dt

Then it is possible to show that

‖XI(∆ + I)−1δe‖ ≤ C(d2)−Q/2−|I|/2+1 ∼ d−Q−|I|+2.

We can conclude that
‖XIf‖L2 ≤ ‖(∆ + I)|I|/2f‖.

Remark 13 In general the estimate ‖XiXjf‖L2 ≤ ‖∆f‖ does not hold, for exam-
ple it does not hold on the motion group of the plane. It does, however, hold on
nilpotent Lie groups.
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8 Appendix

8.1 Manifolds

Let M be a topological space. A n-dimensional chart on M is any couple (U,ϕ)
where U is an open subset of M and ϕ is a homeomorphism of U onto an open
subset of Rn. Thus a chart is an open set U in M where a local coordinate system
is defined. A C-manifold of dimension n is a Hausdorff topological space with
a countable base such that each of its points belongs to an n-dimensional chart.
A family A of charts on a C-manifold is called a Ck-atlas (where k is a positive
integer or +∞) if the charts from A cover M , and the change of coordinates in the
intersection of any two charts from A is given by Ck-functions. Two Ck-atlases
are said to be compatible if their union is again a Ck-atlas. The union of all
compatible Ck-atlases determines a Ck-structure on M . A differentiable manifold
is a couple (M,A) where M is a C-manifold and A is a C∞-atlas on M .

A mapping ξ : C∞(M)→ R is a tangent vector to M at x if it is linear and for
all f, g ∈ C∞(M)

ξ(fg) = ξ(f)g(x0) + ξ(g)f(x0).

The set of all such tangent vectors is denoted TxM .
A smooth vector field X on M is an assignment of a tangent vector Xp ∈ TpM

to each point p ∈M where for all f ∈ C∞(M) the function Xf : M → R given by
Xf(p) = Xpf is smooth.

Let M,N be two smooth manifolds. The derivative at p ∈ M of the smooth
map F : M → N is the homomorphism of tangent spaces

DFp : TpM → TF (p)N

defined by
DFp(ξ)(f) = ξ(f ◦ F )

for f ∈ C∞(N).

8.2 Lie Groups and Lie Algebras

A Lie group G is a group which is also differentiable manifold such that the group
operations (g, h) 7→ gh and g 7→ g−1 are smooth maps. For each g ∈ G clearly the
maps Lg and Rg from G to G defined by

Lg(h) = gh

Rg(h) = hg

are diffeomorphisms of G. We say the maps Lg and Rg are left and right transla-
tions on G respectively.
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Recall that given a vector field X on G and diffeomorphism k : G→ G, we can
define a new vector field on G using k in the following way. Firstly we define the
push-forward map between tangent bundles k∗ : TG → TG. For g ∈ G, ξ ∈ TgG
let

(k∗ξ)(f) = ξ(f ◦ k)

for all f ∈ C∞(G), so that k∗ξ ∈ Tk(g)G. Now we can define the vector field k∗X
by setting

(k∗X)(k(g)) = k∗(X(g))

for all g ∈ G, which is well defined since k is a diffeomorphism. If X and Y are two
vector fields on G and are such that k∗(X(g)) = Y (k(g)) then we write Y = h∗X.

A smooth vector field X on G is said to be left invariant (resp. right invariant)
if for any g ∈ G,

Lg∗X = X

(resp. Rg∗X = X), if for all g ∈ G, Lg∗(X(h)) = X(gh), for all h ∈ G (resp.
Rg∗(X(h)) = X(hg) for all h ∈ G).

The set of all left (or right) invariant vector fields on G is called the Lie algebra
of G, and is denoted g. The map X 7→ X(e) is a linear isomorphism between g
and TeG, the tangent space to G at the identity. So g is a finite dimensional vector
space whose dimension is the same as that of G. A critical observation is that if
X, Y are in g then the commutator [X, Y ] = XY − Y X is also in g i.e g is closed
under the bracket operation.

Let X be a smooth vector field on G. The integral curve of X passing through
point g ∈ G is a curve t 7→ σ(t) in G such that σ(0) = g and

σ∗

(
d

dt

)
t

= Xσ(t)

for all t ∈ (−ε, ε), for some ε > 0, where σ∗
(
d
dt

)
t

is defined by

σ∗

(
d

dt

)
t

f =
d

dt
(f ◦ σ(t))

∣∣∣∣
t

for f ∈ C∞(G). By theory of ordinary differential equations, we see that such a
curve certainly exists for some ε > 0.

A vector field X is said to be complete if, at every point g ∈ G, the integral
curve that passes through g can be extended to an integral curve for X defined for
all t ∈ R. An important result is that every left (or right) invariant vector field on
a Lie group is complete. Let X ∈ g. Then the unique integral curve t 7→ σX(t) of
X that is defined for all t ∈ R by virtue of the result stated above, is written as

t 7→ exp(tX).
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It can be shown that the exponential map is a local diffeomorphism from a
neighbourhood of 0 in g onto a neighbourhood of e in G, and its differential map
is 0 at the identity (but is not in general a global diffeomorphism nor a local
homomorphism).

It is easily seen that for X ∈ g, s, t ∈ R, exp(s+ t)X = exp(tX) exp(sX). More
generally if X, Y ∈ g commute, that is [X, Y ] = 0, then

exp(X + Y ) = exp(X) exp(Y ).

It is of course possible to define the notion of Lie algebra independently of
the notion of a Lie group. Namely an abstract Lie algebra is a vector space L,
equipped with bilinear mapping [·, ·] : L× L→ L such that
i) [X, Y ] = −[Y,X],∀X, Y ∈ L
ii) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (Jacobi Identity).

8.3 Haar Measure

Any Lie group carries some left (resp. right) invariant measures called left (resp.
right) Haar measures. Any two left (resp. right) Haar measures µ1, µ2 are related
by µ1 = cµ2 for some c > 0, so that essentially there is only one left (resp. right)
Haar measure.

Let µ be a left Haar measure on G. For g ∈ G and A a Borel subset of G, let
µg(A) = µ(Ag). Then µg is another left Haar measure:

µg(hA) = µ(hAg) = µ(Ag) = µg(A)

for all Borel subsets A of G. Therefore by above we have that there exists m(g) > 0
such that

µg = m(g)µ.

Clearly m(gh) = m(g)m(h) and m(e) = 1. The function m : G→ (0,∞) is called
the modular function of G. If m ≡ 1 we say that G is unimodular. It can easily
be shown that G is unimodular if and only if any left Haar measure is also a right
Haar measure.

8.4 Solvable, Semisimple and Nilpotent Lie Groups

Let G be a Lie group, with Lie algebra g. Recall that an ideal of g is a subspace
I of g such that [X, Y ] ∈ I for all X ∈ g, Y ∈ I.
Define

g(1) = [g, g] = span{[X, Y ] : X, Y ∈ g}.
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Then g(1) is the smallest ideal of g with an abelian quotient. We can then induc-
tively define for k ≥ 1

g(k+1) = [g(k), g(k)]

so that g(k+1) is smallest ideal of g(k) whose quotient is abelian. We call the series
g(k) the derived series of the Lie algebra g. Note that for all k, g(k) is an ideal of
g(k−1) and

g ⊇ g(1) ⊇ g(2) ⊇ . . . .

We say that the Lie algebra g is solvable if g(m) = 0 for some m ≥ 1, and the Lie
group G is solvable if its Lie algebra is.

If g is solvable, then the derived series of g provides us with an “approximation”
of g by a finite series of ideals with abelian quotients. This also works the other
way round, since if g is a Lie algebra with ideals

g = I0 ⊇ I1 ⊇ · · · ⊇ Im−1 ⊇ Im = 0

such that Ik−1/Ik is abelian for 1 ≤ k ≤ m, then g is solvable.
It can be shown that if g is a finite dimensional Lie algebra, then there exists a

unique solvable ideal of g containing every solvable ideal of g. This largest solvable
ideal is called the radical of g, and is denoted rad g. A non-zero Lie algebra g is
said to be semisimple if it has no non-zero solvable ideals, or equivalently if

rad g = 0.

We now inductively define another series of subspaces of the Lie algebra g by

g1 = [g, g] and gk+1 = [g, gk] for k ≥ 1.

Then g ⊇ g1 ⊇ g2 ⊇ . . . . In this case we have that gk is an ideal of g and not just
of gk−1.

The Lie algebra g is said to be nilpotent if for some m ≥ 1, we have

gm = 0,

and we say that the Lie group G is nilpotent if its Lie algebra is nilpotent.
An important result is that if G is a nilpotent Lie group, then the so-called

Baker-Campbell-Hausdorff formula is global. Indeed, then there exists a Lie poly-
nomial P : g × g → g with rational coefficients, (i.e. for X, Y ∈ g, P(X, Y ) is a
finite sum of terms involving X, Y and commutators of X and Y ) such that for
any X, Y ∈ g,

expX expY = expP(X, Y ).

Moreover, if G is simply connected then the exponential map g → G is a diffeo-
morphism. In that case, the group law of G is thus fully characterized by the Lie
algebra structure of g.

We also have that any nilpotent Lie group is unimodular.
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8.5 Some Classical Functional Analysis Results

In this section we cover the basic functional analysis results and definitions that
are used within the notes.

8.5.1 Rademacher’s Theorem

Let f be a real valued function defined on an open subset U ⊆ Rn so that f : U →
Rm. Then f is called Lipschitz continuous, or is said to satisfy the Lipschitz
condition if there exists a constant K ≥ 0 such that for all x, y ∈ U ,

|f(x)− f(y)| ≤ K|x− y|.

Theorem 6 (Rademacher) If U is an open subset of Rn and f : U → Rm is
Lipschitz continuous, then f is differentiable almost everywhere.

In 1989 Pansu extended this theorem to the setting of Lie groups endowed with
the Carnot-Caratheodory distance, and it is this extension of the theorem that is
used in the notes. See [4] for details.

8.5.2 Essentially Self Adjoint Operators

Let T : D(T ) → H be a linear operator with domain D(T ) that is dense in a
complex Hilbert space H. If S is another such linear operator write S ⊂ T if T is
an extension of S, i.e. if

D(S) ⊂ D(T ) and S = T |D(S).

Since D(T ) is dense inH, we may define the Hilbert adjoint operator, T ∗ : D(T ∗)→
H, of T as follows. The domain D(T ∗) of T ∗ consists of all y ∈ H such that there
is a y∗ ∈ H satisfying

〈Tx, y〉 = 〈x, y∗〉

for all x ∈ D(T ). For each such y ∈ D(T ∗) the Hilbert adjoint operator T ∗ is then
defined by T ∗y = y∗.

We say that T is symmetric if for all x, y ∈ D(T ),

〈Tx, y〉 = 〈x, Ty〉.

It is simple to show that T is symmetric if and only if T ⊂ T ∗. We say that T is
self-adjoint if T = T ∗.

Now define
G(T ) = {(x, Tx) : x ∈ D(T )}.
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If G(T ) is a closed subspace of H×H, we say that T is a closed linear operator.
If the linear operator T has an extension T1 which is a closed linear operator, then
T is said to be closable, and if T1 is the minimal such closed linear extension of T
then T1 is said to be the closure of T in H.

Now suppose that T : D(T ) → H is a densely defined linear operator that is
symmetric. If the closure of T (which is actually equal to T ∗∗) is self-adjoint, then
T is said to be essentially self-adjoint. We have the following useful result.

Theorem 7 Let T : D(T ) → H be a densely defined, symmetric linear operator
on Hilbert space H. Suppose also that

〈Tx, x〉 ≥ 0 ∀x ∈ D(T ).

Then T is essentially self adjoint if and only if the range of T + I is dense in H
(where I is the identity map on H).
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