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1 Struktura algebr

Przypominam ze na wyktadzie 7 i 8 zdefiniowalisémy przestrzenie pierwiastkowe
dla dziatania algebry nilpotentnej na przestrzeni V. Dzis§ bedziemy potrzebowaé
wariant tego dla dzialania ad gdy IV jest nilpotentna podalgebra A.

Lemat 1.1 Niech A bedzie skoriczenie wymiarowq algebrq Liego nad ciatem
algebraicznie domknietym K zas N nilpotentng podalgebrq A. Piszemy

Ay ={a € A:YpenTi(ad, — N)*(a) = 0}

gdzie \ przebiega funkcje z N w K ( jesli K jest charakterystyki O to mozna
ograniczyé X do funkcji liniowych, czyli do przestrzeni dualnej do N ). Wiedy

A= D)Ayg.
Ponadto N C Ao, [Aa, Ag] C Aptp.

Dowdd: Sam rozkltad to wynik w wyktadu 7. To ze N C Ay wynika bezposrednio
z definicji nilpotentnosci N. A wiec pozostaje pokazaé ze jesli a € Ay, b € Ag,
n € N to (ad, — a(n) — f(n))"([a,b]) = 0 dla m = 2dim(A). Jednakze mamy
wariant wzoru Leibnitza:

m % m m—
(at, —a() = 50" (0.0 = Y- () ) ad, — o) (). (a, = 5" ).

k=0

Ten wariant tatwo pokazaé przez indukcje i z niego wynika réwnos$é wyzej: co
najmniej jedna z liczb k i m — k jest wieksza lub réwna dim(A), co oznacza ze
jeden z argumentéw komutatora znika, czyli cala suma znika. O

Rozklad wyzej wymaga ciata algebraicznie domknietego, ale przestrzenn Ag
jest dobrze zdefiniowana nad dowolnym ciatem.

Lemat 1.2 Niech A bedzie skoriczenie wymiarowq algebrg Liego nad ciatem K
za$ N nilpotentng podalgebrqg A. Wtedy

A=Ay V

gdzie Ay jest jak wyzej. Przy tym [Ag, Ag] C Ao, [Ao, V] =V.



Dowdd: Niech Wy = A, Wi 1 = [N, Wy]. Bierzemy V' = Wim(a). Zauwazmy ze
jesli K jest cialem algebraicznie domknietym to dziata Lemat 1.1. Dla ustalonego
a # 0 istnieje n € N taki ze a(n) # 0, wtedy ad,, jest odwracaly na A,, czyli
[N, Ay] = Aq. A wiec dla

U= @a#(]Aa

mamy [N,U] = U. Wynika stad ze dla kazdego ¢ mamy U C W,. Dlan € N
operator ad,, jest nilpotentny na Ag, a wiec na mocy twierdzenia Engela mozna
wybra¢ baze Ay tak by wszystkie ad,, miaty posta¢ trojkatng gorng z zerami
na diagonali. Wtedy iterowany komutator [N, ..., [N, Ag]] = 0, skad wynika ze
dla n > dim(Ag) mamy Ag N W, = {0}. To oznacza ze V' = Waima) = U i ze
A=Ay ® V. Relacja [Aqa, Ag] C Antp ozacza ze [Ag, V] C V.

Rozwazmy teraz przypadek ogdlnego K. Wtedy W; mozemy wyliczaé¢ nad K.
Niech K bedzie algebraicznym domknieciem K i A bedzie algebra otrzymana
z A przez rozszerzenie skalaréw do K. Oczywiscie podprzestrzenie W, wyliczane
nad K sa podzbiorami W}, wyliczanego nad K. Ponadto Ponadto baza W), wy-
liczanego nad K pozostaje baza W}, wyliczanego nad K. A wiec V = AN Vg i
podobnie dla Ay, co daje A= Ag®V i [Ag, Ag] C Ag i [Ap, V] =V] O

Definicja. Powiemy ze podalgebra C C A jest podalgebra Cartana wtedy
i tylko wtedy gdy C jest nilpotentna i Ay = C gdzie Ay jest przestrzenia z
rozktadu wyzej.

Komentarz: Rownowaznie C' jest podalgebra nilpotentna i jest swoim wla-
snym normalizatorem, tzn. C = N(C) gdzie normalizator definiujemy wzorem

N(C)={z € A:ad,(C)CC}.

Inny warunek, rownowazny gdy cialo K ma co najmniej dim(A) elementow
to warunek ze C jest podalgebra nilpotentna i istnieje element w T € C taki ze
adr daje na A/C operator odwracalny.

Definicja wyzej jest dostosowana do badania dowolnych skoiiczenie wymia-
rowych algebr Liego nad dostatecznie duzymi ciatami. Przy badaniu algebr po6t-
prostych czesto uzywa sie inng definicje.

Lemat 1.3 Niech A bedzie skoriczenie wymiarowq algebrg Liego nad ciatem R.
Jesli S/R jest rozszerzeniem cial i C jest podalgebrg Cartana w A wtedy i tylko
wtedy gdy Cs jest podalgebrq Cartana w Ag.

Dowdd Zauwazmy ze C' jest nilpotentna wtedy i tylko wtedy gdy Cg jest nil-
potentna. W dowodzie lemactu 1.2 pokazalismy ze rozklad wyliczony nad R po
rozszerzeniu skalaréw da rozktad wyliczany nad domknieciem algebraicznym R.
Ten sam argument dziata dla dowolnych rozszerzen cial. Ale rownosé Ag = C
oznacza ze C jest podalgebrg Cartana, co daje wynik. O

Lemat 1.4 Niech A bedzie skoriczenie wymiarowq algebrg Liego nad ciatem
R nieskoriczonym lub skoriczonym mocy q z q > dim(A). Wtedy A zawiera
podalgebre Cartana. Ponadto kazda podalgebra Cartana zawiera element c taki
ze ad,. jest odwracalny na A/C.



Dowdd Najpierw udowodnimy druga czeéé¢ gdy ciala algebraicznie domknietego.
Niech a # 0. Wtedy istnieje ¢ € C taki ze a(c) # 0. Oznacza to ze ad. jest
odwracalny na A,. Mianowicie, mamy

ad, = a(c)(I + ﬁ(adc — a(e)D)

Operator N = ﬁ(adc—a(c)l) jest nilpotentny na A,, wigc szereg >_po_,(—1)*N*
redukuje sie do skorniczonej sumy ktéra daje odwrotnosé I + N, a wiec i ad, na
A

Jesli ad(c) jest odwracalny na V,,, to wyznacznik d,(c) ograniczenia ad(c)
do V, jest niezerowy. d,(c) jest wielomianem na C, niezerowym skoro istnieje
¢ w ktorym on jest niezerowy. Produkt p(c) = d,(c) po niezerowych « daje
wyznacznik ad. ograniczonego do

V= @a;éOAa

czyli réwniez wyznacznik ad. dzialajacego na A/C. p(c) jako produkt nieze-
rowych wielonianéw jest niezerowy, a zaktadamy tu ze cialo jest algebraicznie
domknigte, wiec istnieje ¢ € C takie ze p(c) # 0. Wtedy ad. dziatajacy na
A/C ma niezerowy wyznacznik, a wiec jest odwracalny. Daje to druga czesé
dla algebraicznie domknietego R. Ogolnie, jesli R jest dowolne to mozemy wy-
licza¢ wielomian p(c) nad R, a wiec jest on niezerowy. Wyznacznik ma stopien
rowny wymiarowi przestrzeni, w naszym przypadku wymiarowi A/C, ktory jest
mniejszy niz dim(A). Jako ze cialo R ma co najmniej dim(A4) elementéow, to
niezerowy wielomian nie moze da¢ funkcji zerowej na C, a wiec istnieje ¢ € C
takie ze p(c) # 0, co daje druga czesé w pelnej ogolnosei.
By pokazaé istnienie algebr Cartana dla T' € A rozpatrujemy przestrzen

To = {a € A: Fpadr(x)* = 0}.

W notacji uzywanej wczesniej byloby to Ag, ale w przypadku Tj interesuje nas
zaleznosé od T' i dlatego tak piszemy a nie Ag. Dla konsekwencji nizej bedziemy
tez pisaé T).

Wybieramy T tak by wymiar [ przestrzeni Ty byl minimalny. Twierdzimy
ze Ty jest podalgebra Cartana w A. Po pierwsze, [ nie zalezy od tego czy je
wyliczamy dla T' € A czy T € Ag. Mianowicie, wymiar Tj to krotnosé wartosci
wlasnej 0 w wielomianie charakterystycznym T, czyli dim(Tp) > &k wtedy i
tylko wtedy gdy wspotezynniki przy A\* w det(ady — ) znikaja dlai =0, ..., k.
Wspotezynnik ¢;(T) przy A to wielomian od wspotrzednych 7' stopnia dim(A) —
i. Zauwazmy ze co(T') znika tozsamosciowo, bo T jest w jadrze adr czyli ¢o(T) =
det(T) = 0. Dlai > 0, jesli ¢;(T") znika na A to poniewaz cialo R ma co najmniej
dim(A) elementéw a stopien ¢;(7T') jest mniejszy niz dim(A), to ¢;(T") znika jako
wielomian, czyli znika tez na Ag.

A wiec istenieje T' € C takie ze wymiar Tj jest minimalny gdy minimum
liczymy dla Ag gdzie S jest domknieciem algebraicznym R. Na mocy juz udo-
wodnionej czesci wystarczy pokazaé ze (Tp)s jest podalgebra Cartana w Ag. Dla
ciala algebraicznie domknietego stosuje sie Lemat 1.1 (jednowymiarowa algebra
rozpinana przez T jest nilpotentna podalgebra A), czyli

A=(Ty)eV



gdzie
V = @xzoTh.

Na mocy Lematu 1.1 Ty jest podalgebra, ponadto [Tp,Tx] C Ty i konse-
kwentnie [Ty, V] C V. Dla elementu U € Tj niech w(U) oznacza wyznacznik
ad(U) obcietego do V. Zauwazmy ze T € Ty i w(T) # 0. A wiec w nie znika
tozsamosciowo. Jesli w(U) # 0 to U jest odwracalny na V', czyli Uy C Tp. Jed-
nakze wymiar T jest minimalny mozliwy, wiec dla takich U mamy Uy = Tj.
Niech teraz v(U) bedzie dowolnym elementem macierzy dajacej ad(U)™ obciety
do Tjy. Pokazalismy ze w(U) # 0 implikuje v(U) = 0, czyli wv = 0. Jednakze
pierscienn wielomianéw nie ma dzielnikéw zera i w # 0, czyli v = 0. Skoro v
byt dowolnym elementem macierzy ad(U)™ obcietego do Tp, to ad(U)™ = 0 na
Ty czyli Ty C Uy. Oznacza to ze algebra C' = T jest nilpotentna. T' € C, w
wiec w rozkladzie z lematu 1.1 dla C mamy Ay C Ty = C. Nilpotentnos¢ C
daje C C Ay, czyli tacznie C' = Ag, a wiec drugi warunek defincji podalgebry
Cartana jest spelniony. ([l

Jesli N spelnia N = Ay to A/N =V gdzie V = @rz0Ax. JeslidlaT € N
mamy A(T) # 0 to ady jest odwracalny na Ay, czyli wyznacznik wy(T") opera-
tora ady obcietego do A nie jest zerowy. Wyznacznik w operatora adr obcietego
do V jest produktem wyznacznikow wy, wiec jest niezerowym wielomianem. A
wiec istnieje T € N taki ze w(T) # 0. Ale to oznacza ze adr jest odwracalny
na V', czyli rowniez na A/N, czyli N jest podalgebra Cartana. O

Uwaga: Z naszej definicji wida¢ ze podalgebra Cartana jest takiej postaci
jak w dowodzie twierdzenia o istnieniu, tzn. istnieje T' € C' taki ze

C={ac A: 3 adk(a) =0}.

Takie T nazywa si¢ elementami regularnymi.

Uwaga: Czesto stosuje sie inne definicje i argumentujac jak w powyzszych
lematach mozna pokazaé ze dla algebr skoriczenie wymiarowych i ciala ktére ma
co najmniej dim(A) elementoéw daja one ten sam wynik.

W naszym instytucie badano grupy bedace produktami potprostymi grupy
abelowej i nilpotentnej, zapisywane zwykle AN. Taka grupa jest rozwiazalna.
Naturalne jest pytanie czy dowolna grupe rozwiazalng da si¢ tak zapisaé, a
jesli nie to jak "daleko" jest dowolna grupa rozwigzalna od grup tej postaci.
Podalgebra Cartana daje tu odpowiedZ: mamy

A=C+IAA]

i N = [A, A] jest nilpotentna. A wiec ogélnie zamiast abelowego C' musimy
dopuszczaé nilpotenentne C. Moze sie tez zdarzy¢ ze C N [A4, A] # {0} czyli
suma nie jest prosta. Ale dla wielu rozumowan ten rozktad jest prawie tak dobry
jak suma prosta. Jednym z naturalnych zalozen jest ze niezerowe zespolone
A odpowiadajace nietrywialnym A, sg zawarte w zbiorze S zamknietym na
dodawanie i nie zawierajacym zera ("stozku wlasciwym"). Wtedy V' = @x.0Ax
jest ideatem nilpotentnym w A i rozktad

A=CoV



jest przedstawieniem A jako produktu potprostego algebr. Zauwazmy ze dla al-
gebry rzeczywiste] A wystepuja w parach sprzezonych, suma A, dla dwu sprze-
zonych A daje podprzestrzeni rzeczywista i V' rowniez jest rzeczywiste. Ponadto
warunek na stozek zalezy tylko od czesci rzeczywistych .

Pokazalismy istnienie podalgebr Cartana, naturalne jest pytanie o jedno-
znaczno$¢. Widaé ze moze istnie¢ wiele réznych podalgebr Cartana. Pokazamy
ze w przypadku ciala algebraicznie domknietego charakterystyki 0 wszystkie
podalgebry Cartana sa sprzezone. Doktadniej, jesli z € A i ad, jest operato-
rem nilpotentnym, to exp(ad,) jest automorfizmem A. Automorfizm ktory jest
produktem automorfizmow postaci exp(ad, ) (z nilpotentym ad, ) nazywamy au-
tomorfizmem elementarnym. Automorfizmy elementarne tworza grupe, jest to
doktadnie grupa generowana przez automorfizmy postaci exp(ad;) z nilpoten-
tym ad,.

Komentarz: Definicja exp(ad,) zawiera dzielenie, dlatego zakladamy cha-
rakterystyke 0. Wida¢ ze wystarczaloby charakterystyka wieksza od wymiaru
algebry, a z dowodu widaé ze wystarczy charakterystyka wieksza niz wymiary
przestrzeni A,. Dla klasycznych algebr prostych przestrzenie A, sa jednowy-
miarowe, wiec dla nich wynik zachodzi z dowolnej charakterystyce.

Lemat 1.5 Niech A bedzie algebrg Liego nad ciatem algebraicznie domknietym
K charakterystyki 0. Jesli Cy i Cy sq dwoma podalgebrami Cartana w A to
istnieje automorfizm elementarny u taki ze u(Ch) = Cs.

Dowdd: Wiemy ze kazda podalgebra Cartana C' jest postaci Ty gdzie
To = {a € A: Fradk(a) = 0}

dla pewnego T € C. Element C' dla ktorego Ty = C nazywamy elementem
regularnym. Elementy T° € C ktore nie sg regularne to dokladnie te elementy
ze rzad adp jest mniejszy niz maksymalny mozliwy. Rzad mozna wyliczaé przy
pomocy minorow. W szczego6lnosci zbior elementéw T € C ktére nie sg regu-
larne jest zbiorem zer pewnego wielomianu (produktu odpowiednich minoréw).
Przypomnijmy ze mamy

A=CODrzoAn.

Jesli # €y z A # 0 to ad, jest nilpotentny. Mianowicie, ad,(V3) C Vaiy i
ad];(Vg) C Va4xa. Dla dostatecznie duzego k wszystkie przestrzenie Va iy beda
zerowe, czyli adl; = 0. Teraz definiujemy odwzorownie ¢ na C' x [[, V\ wzorem

d(hyxxry, ... xx,) = exp(adml) ...exp(adg,, )h

Zauwamy ze elementy w obrazie ¢ maja posta¢ u(h) gdzie u jest automorfizmem
elementarnym za$ h € C. Twierdzimy ze pochodna w zerze ¢ jest na. Miano-
wicie, pochodna czgstkowa wzgledem x, to identycznosé, podobnie pochodna
czastkowa wzgledem h to identyczno$é. A wiec na mocy Lematu 3.7 z dodatku
obraz zbioru elementéw regularnych przez ¢ zawiera zbioér otwarty w topologii
Zariskiego. Niech teraz ¢; bedzie odwzorowaniem dla Cj a ¢o odwzorowaniem
dla Cs. Przekrdj obrazow zawiera zbidr otwarty w topologii Zariskiego, a wiec
jest niepusty. A wiec istnieja u;, T3, ¢ = 1,2 takie ze u; jest automorfizmem
elementarnym zas T; jest elementem regularnym w C; i mamy

U1 (Tl) = U2 (TQ)



czyli
UQ_IU1(T1) = TQ.

Jako e u; 'u; jest automorfizmem, to
uy ur(Ch) = uy Mur((Th)o) = (Ta)o = Co

czyli faktycznie automorfizm elementarny u; 'u; przeprowadza C; na Cs.

2 Forma Killinga i kryterum Cartana

Definicja. Niech A bedzie skoriczenie wymiarowa algebra Liego nad ciatem.
Forme

K(z,y) = Tr(adgad,)

nazywamy forma Killinga A.

Lemat 2.1 Forma Killinga jest niezmiennicza:
K([z,2,y) + K(z, [2,9]) = 0.

Dowdd:

K([z,z],y)+K (z,[z,y]) = Tr(ad,ad,ad,—ad,ad,ad,)+Tr(ad,ad,ad,—ad,ad,ad,)
= Tr(ad,ad,ad, — ad;adyad,)

= Tr(ad,ad,ad, — ad,adzad,) = 0.

Lemat 2.2 Forma Killinga obcieta do ideatu to forma Killinga ideatu.

Proof. Dowo6d zostawiam jako ¢wiczenie dla czytelnika. (Il

Niech A bedzie skonczenie wymiarowa polprosta algebrg Liego nad ciatem
algebraicznie domknietymi F' charakterystki 0 i niech C' bedzie podalgebra Car-
tana w C'. Mamy wtedy rozklad

A=C&®uecprla
gdzie A = {a: a #0, A, # {0}}.
Lemat 2.3 (Weyl) Jesli e € Ay, f € A_o, h = [e, f], B # 0, Ag # {0}

to istnieje liczba wymierna rq g zalezna od «, 8 lecz niezalezna od wyboru e, f,
taka ze B(h) = ro,ga(h).



Dowod: Niech V' = ®pezAgina. V jest ade,ady i ady, niezmiennicza. Skoro
h = [e, f] to Try (adp) = 0. Czyli

> (B(h) + na(h)) dim(Agna) =0

nez

czyli
B(h) > dim(Agine) = —a(h) Y ndim(Agina)
nez nez
i
ZnEZ ndim(Agina)
h) = — h
p) ZneZ dim(Aﬂ+na) a(h)

Lemat 2.4 Jesli A jest algebrg Liego nad ciatem charakterystyki 0, takq Ze
A = [A, A] to forma Killinga A jest niezerowa.

Dowdd: Bez zmniejszania ogo6lnosci mozna zakladaé ze ciato podstawowe jest
algebraicznie domkniete. Niech C' bedzie podalgebra Cartana w A. Mamy

A=®,A,

gdzie Ag = C. Poniewaz dla 8 # —a mamy [A,, Ag] C Aayp zalozenie ze
[A, A] = A implikuje ze C = lin[A,, A_,]. W szczegolnosci istnieje o # 0,
e€ Ay, f€A_, takie ze h = [e, f] # 0. Z lematu 2.3 wynika teraz ze

K(h,h) = B(h)*dim(Ag) = a(h)* Y rZ 5 dim(Ag).
B B

Suma po  powyzej jest suma liczb nieujemnych, przy tym r, o = 1, dim(A4,) >
0, czyli suma jest dodatnia. A wiec K(h,h) = 0 implikuje ze a(h) = 0 i kon-
sekwentnie dla dowolnego [ takiego ze Ag # 0 mamy SB(h) = 0. C jest roz-
pinane przez wektory h jak wyzej, gdyby dla dowolnego takiego h zachodzito
K(h,h) = 0 to jedynym « takim ze A, # {0} byloby 0, czyli A = C bylaby
nilpotentna. Lecz to przeczyloby warunkowi [A, A] = A. O

Lemat 2.5 (Kryterium Cartana). Jesli A jest skoriczenie wymiarowq algebrg
Liego nad ciatem charakterystyki 0 to

o A jest rozwigzalna wtedy i tylko wtedy gdy A jest ortogonalne do [A, A]
wzgledem formy Killinga

o A jest pétprosta wtedy i tylko wtedy gdy forma Killinga A jest niezdegene-
rowana

Dowdd: Jesli A jest rozwiazalna, to po rozszerzeniu cialo do ciala algebra-
icznie domknietego, na mocy twierdzenia Liego dla © € A, y € [A, A] operator



adgad, jest nilpotentny, czyli K(z,y) = Tr(adyad,) = 0. Jesli A jest ortogo-
nalne do [A, A] wzgledem formy Killinga, ale A nie jest rozwiazalna to definiujac
Ao = A, Apt1 = [Ak, Ag] dla pewnego k > 1 mielibySmy Ay = A1 = [Ag, Ax].
Ay, sa ideatami A, a wiec forma Killinga Ay, jest obcieciem formy Killinga A do
Aj. Czyli forma Killinga Ay bylaby zerowa. Ale na mocy lematu 2.4 jest to
niemozliwe, co konczy dowdd pierwszej czesci twierdzenia.

Jesli I C A jest nietrywialnym ideatem rozwiazalnym to rozwazajac Iy = I,
Iy11 = [Ig, I] widzimy ze A zawieralaby nietrywialny ideal abelowy (takim
ideatem jest I z maksymalnym k takim ze I # {0}). Jesli I jest idealem
abelowym, x € A, y € I to I jest podprzestrzenig niezmiennicza dla ad, i dla
ad, czyli I jest nieziennicze dla ad,ad,. Na I mamy ad, = 0 czyli Tr;(adgad,) =
0. Skoro ady(A) C I to na przestrzni ilorazowej A/I operator ad, indukuje
operator zerowy i

K(z,y) = Tr(adyad,) = Try(adzady) + TYA/I(aamaHy) =0

gdzie ad, i ad, = 0 sa operatorami na A/l indukownymi przez ad, i ad,. A
wiec gdyby A nie byta poétprosta to forma Killinga K bylaby zdegenerowana.
Pozostaje pokazaé ze algebra polprosta ma niezdegenerowang forme Kil-
linga. Nie wprost, gdyby A byla poélprosta, zas K bylaby zdegenerowana to
I={xe€A:VYyeaK(z,y) = 0} byltby ideatem A z zerows forma Killinga. Na
mocy pierwszej czesci I bytby ideatem rozwiazalnym, co przeczyltoby potprosto-
cie. Czyli I = {0} i K jest niezdegenerowana. O

Lemat 2.6 Niech A bedzie skoriczenie wymiarowq potprostq algebrq Liego nad
ciatem charakterystyki O i niech Der(A) bedzie algebrq Liego rézniczkowan A.
Wtedy odwzorowanie x — ad, zadaje izomorfizm A z Der(A)

Dowod: Jadrem odwzorowania x — ad, jest centrum A, skoro A jest pot-
prosta to centum jest trywialne i A jest izomorficzne ze swoim obrazem A w
Der(A). A jest idealem w Der(A):

[d,ad,](2) = d([z, 2]) — [2,d(2)] = [d(2), 2] + [, d(2)] = [z, d(2)]

= [d(z), 2] = adg)(2).

A wige forma Killinga algebry Der(A) na A jest identyczna z formg Killinga
A czyli jest niezdegenerowana. Niech I = {d € Der(A) : V,eilK(d,z) = 0}.
Mamy wtedy Der(A) = A ® I. Mianowicie, dla d € Der(A) i z € A definujemy
Ba(z) = K(d,z). Skoro K jest niezdegenerowana na A to istnieje y € A taki
ze By(x) = K(y,z). Teraz dla dowolnego # € A mamy K(d — y,z) = 0, czyli
d—y € I, co pokazuje ze d € A+ I. Jako ze d jest dowolne to Der(A) = A+1.
Jesliz € INA to z lezy jadrze K obcietego do A, co dzieki temu ze K jest
niezdegenerowana na A oznacza ze x = 0, czyli suma A+1T jest suma prosta.

Forma Killinga jest niezmiennicza, a wiec I jest ideatem: dla d € I, z € A,
z € Der(A) mamy [z,2] € A i

K([z,d],x) - 7K(da [va]) =0

czyli [z,d] € I. Teraz dlad € I i ¢ € A mamy [d,z] € ANT = {0}. Lecz, jak
to obliczylismy wyzej [d,ad,] = adg(), czyli d = 0, co oznacza ze I = {0} i



Der(A) = A. O

Definicja: Méwimy ze operator S na przestrzeni wektorowej V' jest polprosty
jesli V ma baze ztozona z wektoréw wlasnych S.

Lemat 2.7 Jesli V jest skoriczenie wymiarowq przestrzeniq wektorowq nad cia-
tem algebraicznie domknietym za$ A jest operatorem liniowym na V', to istniejg
operatory S i N takie Ze A =S+ N, S jest potprosty, N jest nilpotentny i S
komutuje z kazdym operatorem komutujgcym z A.

Dowod: Jesli A ma tylko jedna wartos¢ wlasng a to S =al i N = A - S
daje zadany rozklad. Mianowicie, skoro A ma tylko jedng warto$¢ wlasng to
wielomian minimaly A to (X — a)* dla pewnego k, czyli N* = (A —al)* =01
N jest nilpotentny. Oczywiscie S jest polprosty i komutuje z kazdym operatorm
a wiec tym bardziej z kazdym operatorem komutujacym z A.

Jesli A ma wartosci wlasne a1, . . ., a, toniech V; = {v € V : (A—a,I)3™V)y
0}. Jesli B komutuje z A to dla v € V; mamy (A — a;1)3™(V)By = B(A —
aiI)dim(V)v = 0, czyli Bv € V;. Innymi stowy, podprzestrzenie V; sa niezmien-
nicze dla B. Lecz V = @V, czyli jesli zbudujemy rozklad na kazdym z V; z
osobna to bedzie mial zadane wlasnosci: skoro V; sa niezmiennicze dla B to S
komutujac z B na kazdym z V; z osobna bedzie komutowal z B. Oczywiscie S
bedac suma prosta operatoréw poétprostych jest potprosty, N bedac suma prosta
operatoréw nilpotentnych jest nilpotentny. O

Lemat 2.8 Niech A bedzie skoriczenie wymiarowq pdtprostq algebrq Liego nad
ciatem algebraicznie domknietym charakterystyki O i niech C' bedzie podalgebrg
Cartana w A. Niech A = ®,A, gdzie Ag = C. Dla o # —f3 przestrzenie Ay i
Ag sq ortogonalne wzgledem formy Killinga. Forma Killinga A obcieta do C jest
niezdegenerowana. Ponadto forma Killinga zadaje dualnosé miedzy Aq a A_,.

Dowod: Wiemy ze [An, Ay] C Aayry, a wiec dla z € Ay, y € Ag mamy
adgady(Ay) C Aatpiy 1 (adsady)®(Ay) C Agatg)ty- Jesli o # —f dla dowol-
nego vy takiego ze A, # {0} i duzych k mamy Aj(q4p)+, = {0}, czyli ad,ad,
jest nilpotentny, czyli K (x,y) = Tr(adzad,) = 0. Skoro forma Killinga jest nie-
zdegenerowana za$ dla oo # —f A, jest ortogonalne do Ag to A_, musi byé¢
dualne do A,. W szczegdlnosci dla o = 0 oznacza to ze forma Killinga obcieta
do C jest niezdegenerowana. O

3 Dodatek o topologii Zariskiego

Glownym celem dodatku jest dowdd Lematu 3.7. Mozna by podaé¢ inne dowody,
ten uzywa tylko podstawowy material z algebry i przynajmniej teoretycznie jest
konstruktywny, tzn. mozna by jawnie wyliczy¢ odpowiednie wielomiany defi-
niujace zbiory ktorch istnienie dowodzimy. Alternatywny dow6éd mozna podaé



zauwazajac ze Lemat 3.5 jest szczegélnym przypadkiem twierdzenia o elimina-
cji kwantyfikatoréw dla teorii cial algebraicznie domknietych, zas to twierdzenie
ma relatywnie prosty dowdéd metodami teorii modeli.

Definicja. Niech W bedzie skoiiczenie wymiarows przestrzenia wektorowa
nad cialem. Powiemy ze zbior FF C W jest domkniety w topologii Zariskiego
(albo krocej domkniety) jesli jest zbiorem zer pewnego uktadu wielomianow.

Zauwazmy ze jesli pewien zbiér wielomianéw G zeruje sie na F to réwniez
ideal pierécieniu wielomianéw generowany przez G zeruje sie na F. Zgodnie z
twierdzeniem Hilberta o bazie idealy w w pierScieniu wielomianéw ustalonej
skoniczenej liczny zmienny sa skoriczenie generowalne, wiec zbiér domkniety w
topologii Zariskiego jest zbiorem zer skonczonego uktadu wielomianéw. Dany
zbior moze by¢ zbiorem zer wielu réznych idealow. Najwiekszy ideal dostaniemy
biorac wszystkie wielomiany zerujace sie na F', ten ideal oznaczamy niekiedy
przez I(F).

Zauwazmy tez ze dowoly przekr6j zbioréw domknietych w topologii Zari-
skiego oraz skoriczona suma zbioréw domknietych w topologii Zariskiego jest
domknieta w topologii Zariskiego. Mianowicie, przekroj zbioréow zer idealow
I, jest rowny zbiorowi zer |J, Io. Dla sumy korzystamy z tego ze zbior do-
mkniety jest zbiorem zer skoniczonego uktadu wielomianéw. Jesli F' jest zbio-
rem zer pi,...,Pk, zas G jest zbiorem zer qi,...,g;, to F U G jest zbiorem
zer {p;g; :i=1,....k, j=1,...,1}. Pokazuje to ze suma dwu zbioréw do-
mknetych jest domknieta. Ponadto zbiér pusty jest domkniety jako zbidér zer
wielomianu stale réwnego 1 i cate W jest domkniete jako zbiér zer wielomianu
zerowego. A wiec zbiory domkniete daja nam topologie na W ktéra nazywamy
topologia Zariskiego. Jak zwykle w topologii méwimy ze zbiér jest otwary jesli
jego dopekienie jest domkniete.

Definicja. Powiemy ze zbiér F' domkniety w topologii Zariskiego jest nie-
rozkladalny jesli nie da sie go przedstawi¢ jako sumy dwu zbioréw domknietych
w topologii Zariskiego Fi, Fy, takich ze F; # F.

Zauwazmy ze jesli zbiér nierozkladalny F' jest zawarty w skoniczonej sumie
zbioréw domknietych w topologii Zariskiego F; to istnieje ¢ takie ze F' C Fj.
Mianowicie, zastepujac F; przez F' N F; mozna zaklada¢ ze suma F; jest rowna
F. Dla dwu sktadnikow wynik teraz dostajemy z defincji nierozktadalnosci, zas
dla wiekszej ilosci sktadnikéow uzywamy indukcje.

Lemat 3.1 Jesli zbior F' jest nierozktadalny to ideat I(F') wszystkich wielomia-
now zerujgcych sie na F' jest pierwszy.

Dowdd: Niech py i po beda wielomianami takimi ze p1ps € I(F), czyli dla kaz-
dego w € W mamy pipa(w) = 0. Dla ¢ = 1,2 niech F; = {w : p;(w) = 0}. Jesli
w € F to albo p;(w) = 01 wtedy w € F, albo pa(w) = 01 wtedy w € Fs.
A wiec F' C Fy U Fy. Jako ze I jest nierozktadalny oznacza to ze F' C Fy lub
F C F5. Jesli F C Fy to p; jest zerem na F, czyli py € I(F). Podobnie, jesli
F C F5 to ps € I(F). Jako ze p1,p2 byly dowolne oznacza to ze I(F) jest ide-
alem pierwszym. O

Lemat 3.2 Jesli F' jest domkniety w topologit Zariskiego to jest on skoriczong
sumgq zbiorow nierozktadalnych.
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Dowdd: Przypusémy ze zbioru F' nie da sie przedstawié¢ jako skoriczonej sumy
zbioréw nierozktadalnych. Wtedy F mozna by przedstawié¢ jako sume mniej-
szych zbioréw z ktorych co najmniej jeden nie bylby skoiiczong suma zbioréw
nierozkladalnych. Indukecyjnie otrzymaliby$my nieskoiiczony ciag zbioréw do-
mknietych F; takich ze F = Fy, Fi41 C F; 1 F; # F;11. Niech I; = I(F;)
beda odpowiadajacymi im ideatami. Mamy I; C I;41 i skoro F; # Fii1 to
I; # I;41. Ale pierscienn wielomianéw jest noetherowski, czyli nie istnieje nie-
skonczony wstepujacy ciag ideatow, co daje sprzecznosé ktora konczy dowod. [

Lemat 3.3 Niech W bedzie skoriczenie wymiarowq przestrzeniq wektorowq nad
ciatem algebraicznie domknetym K. Jesli’ T,V C W x K sq zbiormi domknietyms
w topologii Zariskiego, takimi ze T jest nierozktadalny i T —V # 0, zas S jest
rzutem T — V' na W to istniejg podzbiory F,G C W domkniete w topologii
Zariskiego, takie ze S C F, FF — G C S i domkniecie Zariskiego F' — G to F.
Przy tym F jest nierozktadalny.

Dowdd: Niech 7 oznacza operator rzutowania na W. Jako F' bierzemy domknie-
cie (T — V) w topologii Zariskiego. Zauwazmy ze 7(T) C F. Mianowicie
T Cc 7 Y(F)UV. Jako ze T jest nierozkladalny to zawiera sic w jednym ze
sktadnikow sumy. Ale T' C V jest wykluczone przez zalozenie T — V # 0, czyli
T C 7= 1(F) co oznacza ze m(T) C F. F jest nierozkladalny. Mianowicie przy-
pusémy ze F' = Fy U Fy 7z domknietymi F;. Wtedy mamy T = T7 U T, gdzie
T; = 7~ Y(F;)NT. T jest nierozkladalny, czyli T jest réwne jednemu ze sktadni-
kow, powiedzmy T7. Wtedy #n(T) = n(11) C Fi, czyli F = F; co oznacze ze F
faktycznie jest nierozkladalny. Zauwazmy ze jesli G jest zbiorem domknietym
takim ze F — G # 0, to domkniecie F' — G w topologii Zariskiego jest rowne F.
Mianowicie, oznaczajac domkniecie przez H mamy F C H U G. Jako ze F jest
nierozkladalny i nie jest podzbiorem G to F jest podzbiorem H, czyli F' = H.

A wiec pozostaje znalezé zbior domkniety G takize F—G C w(T —V). Wie-
lomiany zadajace T 1 V mozemy traktowaé jako elementy pierscienia K[W,x]
wielomianéw od x i zmiennych z W. Podobnie wielomiany zadajace F sa elemen-
tami pierscienia K [W] wielomianéw od zmiennych z W ktory mozemy traktowaé
jako podpierscien K[W,x]. Niech I bedzie zbiorem elementow K[W, x| zeruja-
cych sie na T za§ M bedzie zbiorem elementow K[W] zerujacych sie na F. Ele-
menty M potraktowne jako elementy K[W,z] zeruja sie na T (bo n(T) C F),
a wiec M C I. Zauwazmy ze jest mozliwe I = K[W,z]M. Ten przypadek jest
tatwy, wtedy T' = F x K. Z zalozenia istnieje wielomian p taki ze p zeruje sie
na V ale istnieje (w, k) € T takie ze p(w, k) # 0. Jesli p nie zalezy od z to jako
G mozna wziasé zbior zer p. Jesli p zalezy od k to przy ustalonym w € F ma
tylko skoricznie wiele zer, czyli istnieje k € K takie ze p(w,k) # 0, co ozna-
cza ze m(T —V) = n(T) = F. A wiec w dalszym ciagu mozemy zakladaé ze
14 K[W,a]M.

Pierscien K[F] funkcji regularnych na F to K[W]/M. Jako ze F jest nieroz-
ktadalny to (Lemat 3.1) M jest ideatem pierwszym i K[W]/M nie ma dzielnikow
zera. A wiec pierscien Kp utamkow K[F] jest cialem. Teraz rozpatrujemy pier-
cient Kp[x] wielomianow jednej zmiennej x o wspolczynnikach w ciele Kp. Za-
uwazmy ze elementy K[W] naturalnie odwzorowuja sie w K. To sie przedtuza
do homomorfizmu j : K[W,z] = Kp[z|. Zauwazmy ze Krlz| = j(K[W,z])Kr
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(pokazujemy to sprowadzajac wspotczynniki elementu K g[z] do wspolnego mia-
nownika ktory daje element Kp).

Zbior J = j(I)KFp jest idealem w Kp[z]. J jest niezerowy, bo j71({0}) =
K[W,x]M # I. Wiadomo ze Kp[x] jest pierScieniem idealéw glownych, czyli
istnieje niezerowy wielomian g € Kp[z] taki ze g generuje J. Jako ze Kp[x] =
J(K[W,z])KF to g mozna wybraé postaci j(h) dla pewnego h € I. Twierdzimy
ze g jest nierozktadalny. Mianowicie rozkltad g = g192 w Kr[z] po sprowadze-
niu do wspolnego mianownika prowadzitby do réwnosci rj(h) = sj(h1)j(ha) w
K|[F][x] dla pewnych r,s € K[F]| — {0} i h1,ho € K[W, ], co prowadzitoby do
réwnosci

th —uhiho =p

gdzie p jest elementem K[W,zx] takim ze j(p) = 0 za$ obrazy ¢ i u w K[F]
to odpowiednio r i s. W szczegolnosei r,u ¢ M zas wszystkie wspotczynniki p
traktowanego jako wielomian od z o wspotezynnikach z K[W] naleza do M. A
wiec p zeruje sie na F' x K, czyli réwniez na T. A wiec na T mamy ré6wnosé

th —uhihy =0

czyli uhihy € I. Jako ze T jest nierozkladalny, to I jest idealem pierwszym,
czyli jeden z czynnikéw nalezy do I. Gdyby ktores h; € I to g nie byt by
generatorem .J, co daje sprzecznosé. Gdyby u € I, to u zerowaloby sie na w(T),
czyli u € M co tez daje sprzecznosé. A wiec przypuszczenie ze g jest rozktadalny
daje sprzecznosé, czyli g jest nierozkladalny.

Teraz twiedzimy ze jesli ¢ € K[W,z] i g|j(¢) w Kr|z] to ¢ € I. Mianowicie
wtedy w K[F][z] mamy réwnosé postaci

rj(q) = 5j(h)j(q2)
zr,s € K[F|—{0} i ¢2 € K[W,z], co prowadzi do rownosci postaci
tq — uhgy = p
z p zerujacym sie¢ na F' x K (a wiec i na T), czyli na F X K mamy roéwnos¢
tq —uhgs =0

czyli tq € I. Jako poprzednio ¢ € I jest niemozliwe, wiec skoro I jest pierwszy
togel.
Zauwazmy ze gdyby J = Kp[z], czyli g mialby stopien 0, to I = K[W, z].
Ale zaktadamy ze T jest niepusty, wiec I # K[W, z], czyli g ma stopienn dodatni.
Jesli ¢ € I, to istnieje f € K[W] — M takie ze jesli (w, k) € F x K sa takie
ze f(w) # 01 h(w,k) =0 to g(w, k) = 0. Mianowicie, to skoro g generuje J to
g dzieli j(q) w Kp[z] czyli jak wyzej na F' x K mamy rownosc

tq —uhgs =0

czyli
t(w)q(w, k) = u(w)h(w, k)ga(w, k).

Jesli h(k,w) = 0 to prawa strona jest zerem, czyli ¢t(w)g(w, k) = 0. Jesli ponadto
t(w) # 0 to g(w, k) = 0. A wiec wystarczy wzias¢ f = t.
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Zauwazmy ze mozna wybraé f wspolne dla wszystkich elementoéw I. Miano-
wicie, I ma skoniczony zbior generatoréow qi, . . ., ¢,. Wybieramy f; dla ¢;. Wtedy
f=/f1... fn dziala dla wszystkich ¢;. Jesli generatory I zeruja sie na (k,w) to
wszystkie elementy I zeruja sie na (k, w). Podsumowujac, istnieje f € K[W]—M
takie ze jesli (w, k) spelia f(w) # 01 h(w, k) = 0 to (w, k) € T. Mianowicie,
wtedy dla dowolnego ¢ € I mamy g(w, k) = 0. Jako ze T jest zbiorem zer I
oznacza to ze (w, k) € T.

Niech teraz N bedzie ideatem elementow K [W, x| zerujacych sie na V i niech
q1,---,qn beda generatorami N. Gdyby ¢ dzielil wszystkie j(g;) to mielibySmy
q; € I, czyli T C V co jest niemozliwe z zalozenia. A wiec istnieje ¢ takie ze g
nie dzieli ¢;. Wybieramy jedno takie ¢ i dla uproszczenia oznaczen dalej zamiast
q; bedziemy pisaé gq.

Jako ze g jest nierozkladalny i nie dzieli j(q) to ideal generowany przez g
ij(q) w Kplx] to cale Kp[z], czyli ten ideal zawiera 1. A wiec istnieja v,w €
Kr|x] takie ze

vj(q) + wg = 1.
Uzywajac wlasnosé Kr[z] = j(K[W, 2] KF i sprowadzajac lewa strone do wspol-
nego mianownika widzimy ze istnieja a,b € K[W,z] i r,s,p € K[F] — {0} takie
ze
ri(a)i(a) + si(0)ih) = p

Jak poprzedznio, daje to rownosé
taq + ubh = v

na F' x K z t,u,v € K[W] ktore nie sa tozsamosciowo réwne zero na F'.

Niech z € K[W] bedzie wspodlezynnikiem przy najwyzszej potedze z w h
(ktéry mozemy potraktowaé jako element K[W]). h mozemy wybra¢ tak by z
nie nalezal do M. Mianowicie, wybieramy h minimalnego stopnia wzgledem x
ale tak by dostaé to samo j(h). Gdyby z € M to j(22*) = 0 i mozna by zastapic
h przez wielomian nizszego stopnia wzgledem x.

Niech teraz G bedzie zbiorem zer fvz. Z zalozenn wyzej f,v,z ¢ M, czyli
jako ze M jest pierwszy fvz ¢ M, czyli fvz nie zeruje sie tozsamosciowo na
F, czyli F — G # (). Niech teraz w € F — G. w ¢ G oznacza ze fvz(w) # 0
i w szezegolnosci z(w) # 0. A wiec przy ustalonym w wielomian h(w,z) jest
wielomianem jednej zmiennej x dodatniego stopnia. Jako ze K jest algebraicznie
domkniete to istnieje k € K takie ze h(w, k) = 0. Mamy fvz(w) # 01 h(w, k) =
0, w szczegolnosci f(w) # 0, czyli jak pokazaliSmy poprzednio (w, k) € T. Jako
ze h(w,k) = 0, to w réwnosci wyzej czlon ubh znika w (w, k), czyli jako ze
v(w) # 0 to

tw)a(w, k)q(w, k) = v(w) # 0

czyli g(w, k) # 0, czyli (w, k) ¢ V. A wiec dla dowolnego w € F' — G znalezlismy
k takie ze (w, k) €T —V,czyliwen(T —V),czyi F -G C n(T - V). O

Lemat 3.4 Niech W bedzie skoriczenie wymiarowqg przestrzeniqg wektorowg nad
ciatem algebraicznie domknetym K. Jesli U C K x W jest niepustq réznica
zbiorow domknietych w topologii Zariskiego, zas S jest rzutem U na W to istniejg
podzbiory F,G C W domkniete w topologii Zariskiego, takie ze S C F, F—G C S
1 domkniecie Zariskiego F' — G to F.

13



Dowdd: Niech U = T — 'V gdzie T'i V' sa domkniete. Na mocy Lematu 3.2 T
jest skoniczong suma zbioréw nierozktadalnych T;:

T=JT.

Niech 7 oznacza operator rzutowania na W. Do par T;, V stosujemy Lemat
3.3 otrzymujac nierozktadalne F; i domkniete G;. Zastepujac G; przez G; N F;
mozemy zaklada¢ ze G; C F;. Bierzemy

F=JF,
G=|]JGi

Na mocy Lematu 3.3 7(T;—V) C F; C F, czyli rowniez n(T—V) C F. Podobnie
Fo—G cn(l;-V)cn(T—-V),czyli F — G C w(T — V). Niech H bedzie
domknieciem F' — G w topologii Zariskiego. Ustalmy ¢ takie ze zbior F; nie jest
zawarty w zadnym Fj; dla j # i. F; jest zawarty w H UG = F U G. Jako ze
F; jest nierozktadalny to jest zawarty w jednym ze sktadnikéw sumy. F; C G
oznaczatoby ze istnieje j takie ze F; C Gj, czyli skoro G; C Fj; to F; C Fj.
Ale i bylo wybrane tak ze F; nie jest podzbiorem F}, wigc ten przypadek jest
niemozliwy. Czyli F; C H. W sumie F; bez zmiany sumy mozemy pominaé
sktadniki zawarte w innych sktadnikach, wiec cala suma F; jest zawarta w H,
czyli H = F, czyli domkniecie F' — G to F. O

Lemat 3.5 Niech V i W bedq skoriczenie wymiarowyms przestrzeniami wekto-
rowymi nad ciatem algebraicznie domknetym K. Jesli U C V @ W jest niepustq
réznicg zbiorow domknietych w topologii Zariskiego, zas S jest rzutem U na W to
istniejg podzbiory F,G C W domkniete w topologii Zariskiego, takie Ze S C F,
F — G C S i domkniecie Zariskiego F — G to F.

Dowdd: Indukcja ze wzgledu na dim(V). Jesli dim(V') = 1 to wynik otrzymujemy
z Lematu 3.4. Jesli dim(V) > 1 to piszemy V = Kv @ V] gdzie V; C V jest
podprzestrzenia wymiaru dim(V) —1 za§ v € V —V;. Niech W = V; @ W, niech
m1 bedzie rzutem z K x Wi na Wi i niech S; = m(U). Na mocy Lematu 3.4
istnieja zbiory Fi,G1 C W7 domkniete w topologi Zariskiego, takie ze S; C Fy,
Fy — G C 51 i domkniecie Zariskiego F; — G to Fj.

Biorac Uy = F1 — G widzimy ze U; jest niepusta réznica zbioréw domknie-
tych. Niech 7o bedzie rzutem z Wi na W i niech So = 7o(Uy). Stosujac zalozenie
indukcyjne otrzymujemy zbiory F, G takie ze Sy C F'i F'— G C Sy oraz do-
mkniecie Zariskiego F'— G to F. Oczywiscie Sy C S wiec F'—G C S. Zauwazmy

ze przeciwobraz m 1(F ) jest zbiorem domknietym i zawiera Uy = F} — Gy,
wiec zawiera tez domkniecie Fy — Gy czyli Fy. Lecz m(U) = 51 C Fy, czyli
71(S) C 7y H(F) czyli S = mom (U) C F. O

Lemat 3.6 Niech ¢ : V — W bedzie odwzorowaniem wielomianowym skoncze-
nie wymiarowych przestrzeni wektorowych nad ciatem K takim ze istnieje punkt
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v € V Ze pochodna ¢ w v jest na. Niech p bedzie wielomianem na W takim Ze
poW =0. Wtedy p = 0.

Dowdd: Przesywajac w V' 1 W mozna zaklada¢ ze v = 01 ze ¢(0) = 0. Zapisujemy
p jako sume wielomianéw jednorodnych

gdzie p; ma stopien ¢ i py # 0. Podobnie

6= o
i=1

gdzie ¢; jest stopnia i. Jako ze ¢(0) = 0 to w wyrazeniu na ¢ nie ma czlonu
stopnia 0. Zauwazmy ze
pop=prodi+r

gdzie wszystkie czlony r maja wyzszy stopien niz k. Dzieki temu ze ¢ jest na
pr o ¢1 # 0. Jako Ze pi o @1 jest stopnia k to nie moze sie uproscié¢ z r. A wiec
p # 0 implikuje p o ¢ # 0. O

Lemat 3.7 Niech ¢ : V. — W bedzie odwzorowaniem wielomianowym skornicze-
nie wymiarowych przestrzeni wektorowych nad ciatem algebraicznie domknetym
K takim Ze istnieje punkt v € V' Ze pochodna ¢ w v jest na. Jesli U jest zbio-
rem ktdry zawiera niepusty zbior otwarty w topologii Zariskiego to ¢(U) zawiera
niepusty zbior otwarty w topologii Zariskiego.

Dowdd: Niech D C V x W bedzie wykresem ¢:
D = {(v,w) : ¢(v) = w}

Niech Z bedzie niepusty zbiér otwartym zawartym w U. Z definicji D jest sbio-
rem domknietym. Niech H = Z x W. Oczywiscie H jest niepustym zbiorem
otwartym w V' x W, czyli D N H jest réznica zbior6w domknietych. Jako ze ¢
jest zdefiniowane na calym V a Z jest niepusty to réwniez D N H jest niepusty.
Oczywisci S = ¢(Z) jest rzutem D N H na W, a wiec na mocy Lematu 3.5 ist-
nieja zbiory domkniete F' i G takie ze S C F', F —G C S'i F jest domknieciem
F — G. Pozostaje pokaza¢ ze F = W (wtedy F — G jest niepustym zbiorem
otwartym). Niech p bedzie wielominem zerujacym sie na F. Wtedy p o ¢ zeruje
sie na W, czyli jako ze K jest nieskonczone to po ¢ = 0. A wiec na mocy Le-
matu 3.6 rowniez p = 0. Ale to oznacza ze jedyny wielomian zerujacy sie na F'
to wielomian zerowy, czyli faktycznie F' = W. (]
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