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1 Struktura algebr
Przypominam że na wykładzie 7 i 8 zdefiniowaliśmy przestrzenie pierwiastkowe
dla działania algebry nilpotentnej na przestrzeni V . Dziś będziemy potrzebować
wariant tego dla działania ad gdy N jest nilpotentną podalgebrą A.

Lemat 1.1 Niech A będzie skończenie wymiarową algebrą Liego nad ciałem
algebraicznie domkniętym K zaś N nilpotentną podalgebrą A. Piszemy

Aλ = {a ∈ A : ∀n∈N∃k(adn − λ)k(a) = 0}

gdzie λ przebiega funkcje z N w K ( jeśli K jest charakterystyki 0 to można
ograniczyć λ do funkcji liniowych, czyli do przestrzeni dualnej do N). Wtedy

A = ⊕λAk.

Ponadto N ⊂ A0, [Aα, Aβ ] ⊂ Aα+β.

Dowód: Sam rozkład to wynik w wykładu 7. To że N ⊂ A0 wynika bezpośrednio
z definicji nilpotentności N . A więc pozostaje pokazać że jeśli a ∈ Aα, b ∈ Aβ ,
n ∈ N to (adn − α(n) − β(n))m([a, b]) = 0 dla m = 2dim(A). Jednakże mamy
wariant wzoru Leibnitza:

(adn −α(n)−β(n))m([a, b]) =

m∑
k=0

(
m

k

)
[(adn −α(n))k(a), (adn −β(n))m−k(b)].

Ten wariant łatwo pokazać przez indukcję i z niego wynika równość wyżej: co
najmniej jedna z liczb k i m− k jest większa lub równa dim(A), co oznacza że
jeden z argumentów komutatora znika, czyli cała suma znika. □

Rozkład wyżej wymaga ciała algebraicznie domkniętego, ale przestrzeń A0

jest dobrze zdefiniowana nad dowolnym ciałem.

Lemat 1.2 Niech A będzie skończenie wymiarową algebrą Liego nad ciałem K
zaś N nilpotentną podalgebrą A. Wtedy

A = A0 ⊕ V

gdzie A0 jest jak wyżej. Przy tym [A0, A0] ⊂ A0, [A0, V ] = V .
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Dowód: Niech W0 = A, Wi+1 = [N,Wi]. Bierzemy V = Wdim(A). Zauważmy że
jeśli K jest ciałem algebraicznie domkniętym to działa Lemat 1.1. Dla ustalonego
α ̸= 0 istnieje n ∈ N taki że α(n) ̸= 0, wtedy adn jest odwracaly na Aα, czyli
[N,Aα] = Aα. A więc dla

U = ⊕α̸=0Aα

mamy [N,U ] = U . Wynika stąd że dla każdego i mamy U ⊂ Wi. Dla n ∈ N
operator adn jest nilpotentny na A0, a więc na mocy twierdzenia Engela można
wybrać bazę A0 tak by wszystkie adn miały postać trójkątną górną z zerami
na diagonali. Wtedy iterowany komutator [N, . . . , [N,A0]] = 0, skąd wynika że
dla n ≥ dim(A0) mamy A0 ∩Wn = {0}. To oznacza że V = Wdim(A) = U i że
A = A0 ⊕ V . Relacja [Aα, Aβ ] ⊂ Aα+β ozacza że [A0, V ] ⊂ V ].

Rozważmy teraz przypadek ogólnego K. Wtedy Wi możemy wyliczać nad K.
Niech K̄ będzie algebraicznym domknięciem K i AK̄ będzie algebrą otrzymaną
z A przez rozszerzenie skalarów do K̄. Oczywiście podprzestrzenie Wk wyliczane
nad K są podzbiorami Wk wyliczanego nad K̄. Ponadto Ponadto baza Wk wy-
liczanego nad K pozostaje bazą Wk wyliczanego nad K̄. A więc V = A ∩ VK̄ i
podobnie dla A0, co daje A = A0 ⊕ V i [A0, A0] ⊂ A0 i [A0, V ] = V ] □

Definicja. Powiemy że podalgebra C ⊂ A jest podalgebrą Cartana wtedy
i tylko wtedy gdy C jest nilpotentna i A0 = C gdzie A0 jest przestrzenią z
rozkładu wyżej.

Komentarz: Równoważnie C jest podalgebrą nilpotentną i jest swoim wła-
snym normalizatorem, tzn. C = N(C) gdzie normalizator definiujemy wzorem

N(C) = {x ∈ A : adx(C) ⊂ C}.

Inny warunek, równoważny gdy ciało K ma co najmniej dim(A) elementów
to warunek że C jest podalgebrą nilpotentną i istnieje element w T ∈ C taki że
adT daje na A/C operator odwracalny.

Definicja wyżej jest dostosowana do badania dowolnych skończenie wymia-
rowych algebr Liego nad dostatecznie dużymi ciałami. Przy badaniu algebr pół-
prostych często używa się inną definicję.

Lemat 1.3 Niech A będzie skończenie wymiarową algebrą Liego nad ciałem R.
Jesli S/R jest rozszerzeniem ciał i C jest podalgebrą Cartana w A wtedy i tylko
wtedy gdy CS jest podalgebrą Cartana w AS.

Dowód Zauważmy że C jest nilpotentna wtedy i tylko wtedy gdy CS jest nil-
potentna. W dowodzie lemactu 1.2 pokazaliśmy że rozkład wyliczony nad R po
rozszerzeniu skalarów da rozkład wyliczany nad domknięciem algebraicznym R.
Ten sam argument działa dla dowolnych rozszerzeń ciał. Ale równość A0 = C
oznacza że C jest podalgebrą Cartana, co daje wynik. □

Lemat 1.4 Niech A będzie skończenie wymiarową algebrą Liego nad ciałem
R nieskończonym lub skończonym mocy q z q ≥ dim(A). Wtedy A zawiera
podalgebrę Cartana. Ponadto każda podalgebra Cartana zawiera element c taki
że adc jest odwracalny na A/C.
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Dowód Najpierw udowodnimy drugą część gdy ciała algebraicznie domkniętego.
Niech α ̸= 0. Wtedy istnieje c ∈ C taki że α(c) ̸= 0. Oznacza to że adc jest
odwracalny na Aα. Mianowicie, mamy

adc = α(c)(I +
1

α(c)
(adc − α(c)I))

Operator N = 1
α(c) (adc−α(c)I) jest nilpotentny na Aα, więc szereg

∑∞
k=0(−1)kNk

redukuje się do skończonej sumy która daje odwrotność I +N , a więc i adc na
Aα.

Jeśli ad(c) jest odwracalny na Vα, to wyznacznik dα(c) ograniczenia ad(c)
do Vα jest niezerowy. dα(c) jest wielomianem na C, niezerowym skoro istnieje
c w którym on jest niezerowy. Produkt p(c) = dα(c) po niezerowych α daje
wyznacznik adc ograniczonego do

V = ⊕α̸=0Aα

czyli również wyznacznik adc działającego na A/C. p(c) jako produkt nieze-
rowych wielonianów jest niezerowy, a zakładamy tu że ciało jest algebraicznie
domknięte, więc istnieje c ∈ C takie że p(c) ̸= 0. Wtedy adc działający na
A/C ma niezerowy wyznacznik, a więc jest odwracalny. Daje to drugą część
dla algebraicznie domkniętego R. Ogólnie, jeśli R jest dowolne to możemy wy-
liczać wielomian p(c) nad R, a więc jest on niezerowy. Wyznacznik ma stopień
równy wymiarowi przestrzeni, w naszym przypadku wymiarowi A/C, który jest
mniejszy niż dim(A). Jako że ciało R ma co najmniej dim(A) elementów, to
niezerowy wielomian nie może dać funkcji zerowej na C, a więc istnieje c ∈ C
takie że p(c) ̸= 0, co daje drugą część w pełnej ogólności.

By pokazać istnienie algebr Cartana dla T ∈ A rozpatrujemy przestrzeń

T0 = {a ∈ A : ∃kadT (x)
k = 0}.

W notacji używanej wcześniej byłoby to A0, ale w przypadku T0 interesuje nas
zależność od T i dlatego tak piszemy a nie A0. Dla konsekwencji niżej będziemy
też pisać Tλ.

Wybieramy T tak by wymiar l przestrzeni T0 był minimalny. Twierdzimy
że T0 jest podalgebrą Cartana w A. Po pierwsze, l nie zależy od tego czy je
wyliczamy dla T ∈ A czy T ∈ AS . Mianowicie, wymiar T0 to krotność wartości
własnej 0 w wielomianie charakterystycznym T , czyli dim(T0) ≥ k wtedy i
tylko wtedy gdy współczynniki przy λi w det(adT − λ) znikają dla i = 0, . . . , k.
Współczynnik ci(T ) przy λi to wielomian od współrzędnych T stopnia dim(A)−
i. Zauważmy że c0(T ) znika tożsamościowo, bo T jest w jądrze adT czyli c0(T ) =
det(T ) = 0. Dla i > 0, jeśli ci(T ) znika na A to ponieważ ciało R ma co najmniej
dim(A) elementów a stopień ci(T ) jest mniejszy niż dim(A), to ci(T ) znika jako
wielomian, czyli znika też na AS .

A więc istenieje T ∈ C takie że wymiar T0 jest minimalny gdy minimum
liczymy dla AS gdzie S jest domknięciem algebraicznym R. Na mocy już udo-
wodnionej części wystarczy pokazać że (T0)S jest podalgebrą Cartana w AS . Dla
ciała algebraicznie domkniętego stosuje się Lemat 1.1 (jednowymiarowa algebra
rozpinana przez T jest nilpotentną podalgebrą A), czyli

A = (T0)⊕ V
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gdzie
V = ⊕λ ̸=0Tλ.

Na mocy Lematu 1.1 T0 jest podalgebrą, ponadto [T0, Tλ] ⊂ Tλ i konse-
kwentnie [T0, V ] ⊂ V . Dla elementu U ∈ T0 niech w(U) oznacza wyznacznik
ad(U) obciętego do V . Zauważmy że T ∈ T0 i w(T ) ̸= 0. A więc w nie znika
tożsamościowo. Jesli w(U) ̸= 0 to U jest odwracalny na V , czyli U0 ⊂ T0. Jed-
nakże wymiar T0 jest minimalny możliwy, więc dla takich U mamy U0 = T0.
Niech teraz v(U) będzie dowolnym elementem macierzy dającej ad(U)n obcięty
do T0. Pokazaliśmy że w(U) ̸= 0 implikuje v(U) = 0, czyli wv = 0. Jednakże
pierścień wielomianów nie ma dzielników zera i w ̸= 0, czyli v = 0. Skoro v
był dowolnym elementem macierzy ad(U)n obciętego do T0, to ad(U)n = 0 na
T0 czyli T0 ⊂ U0. Oznacza to że algebra C = T0 jest nilpotentna. T ∈ C, w
więc w rozkładzie z lematu 1.1 dla C mamy A0 ⊂ T0 = C. Nilpotentność C
daje C ⊂ A0, czyli łącznie C = A0, a więc drugi warunek defincji podalgebry
Cartana jest spełniony. □

Jeśli N spełnia N = A0 to A/N ≈ V gdzie V = ⊕λ̸=0Aλ. Jeśli dla T ∈ N
mamy λ(T ) ̸= 0 to adT jest odwracalny na Aλ, czyli wyznacznik wλ(T ) opera-
tora adT obciętego do Aλ nie jest zerowy. Wyznacznik w operatora adT obciętego
do V jest produktem wyznaczników wλ, więc jest niezerowym wielomianem. A
więc istnieje T ∈ N taki że w(T ) ̸= 0. Ale to oznacza że adT jest odwracalny
na V , czyli również na A/N , czyli N jest podalgebrą Cartana. □

Uwaga: Z naszej definicji widać że podalgebra Cartana jest takiej postaci
jak w dowodzie twierdzenia o istnieniu, tzn. istnieje T ∈ C taki że

C = {a ∈ A : ∃kadk
T (a) = 0}.

Takie T nazywa się elementami regularnymi.
Uwaga: Często stosuje się inne definicje i argumentując jak w powyższych

lematach można pokazać że dla algebr skończenie wymiarowych i ciała które ma
co najmniej dim(A) elementów dają one ten sam wynik.

W naszym instytucie badano grupy będące produktami półprostymi grupy
abelowej i nilpotentnej, zapisywane zwykle AN . Taka grupa jest rozwiązalna.
Naturalne jest pytanie czy dowolną grupę rozwiązalną da się tak zapisać, a
jeśli nie to jak "daleko" jest dowolna grupa rozwiązalna od grup tej postaci.
Podalgebra Cartana daje tu odpowiedź: mamy

A = C + [A,A]

i N = [A,A] jest nilpotentna. A więc ogólnie zamiast abelowego C musimy
dopuszczać nilpotenentne C. Może się też zdarzyć że C ∩ [A,A] ̸= {0} czyli
suma nie jest prosta. Ale dla wielu rozumowań ten rozkład jest prawie tak dobry
jak suma prosta. Jednym z naturalnych założeń jest że niezerowe zespolone
λ odpowiadające nietrywialnym Aλ są zawarte w zbiorze S zamkniętym na
dodawanie i nie zawierającym zera ("stożku właściwym"). Wtedy V = ⊕λ̸=0Aλ

jest ideałem nilpotentnym w A i rozkład

A = C ⊕ V
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jest przedstawieniem A jako produktu półprostego algebr. Zauważmy że dla al-
gebry rzeczywistej λ występują w parach sprzężonych, suma Aλ dla dwu sprzę-
żonych λ daje podprzestrzeń rzeczywistą i V również jest rzeczywiste. Ponadto
warunek na stożek zależy tylko od części rzeczywistych λ.

Pokazaliśmy istnienie podalgebr Cartana, naturalne jest pytanie o jedno-
znaczność. Widać że może istnieć wiele różnych podalgebr Cartana. Pokażamy
że w przypadku ciała algebraicznie domkniętego charakterystyki 0 wszystkie
podalgebry Cartana są sprzężone. Dokładniej, jeśli x ∈ A i adx jest operato-
rem nilpotentnym, to exp(adx) jest automorfizmem A. Automorfizm który jest
produktem automorfizmów postaci exp(adx) (z nilpotentym adx) nazywamy au-
tomorfizmem elementarnym. Automorfizmy elementarne tworzą grupę, jest to
dokładnie grupa generowana przez automorfizmy postaci exp(adx) z nilpoten-
tym adx.

Komentarz: Definicja exp(adx) zawiera dzielenie, dlatego zakładamy cha-
rakterystykę 0. Widać że wystarczałoby charakterystyka większa od wymiaru
algebry, a z dowodu widać że wystarczy charakterystyka większa niż wymiary
przestrzeni Aα. Dla klasycznych algebr prostych przestrzenie Aα są jednowy-
miarowe, więc dla nich wynik zachodzi z dowolnej charakterystyce.

Lemat 1.5 Niech A będzie algebrą Liego nad ciałem algebraicznie domkniętym
K charakterystyki 0. Jeśli C1 i C2 są dwoma podalgebrami Cartana w A to
istnieje automorfizm elementarny u taki że u(C1) = C2.

Dowód: Wiemy że każda podalgebra Cartana C jest postaci T0 gdzie

T0 = {a ∈ A : ∃kadk
T (a) = 0}

dla pewnego T ∈ C. Element C dla którego T0 = C nazywamy elementem
regularnym. Elementy T ∈ C które nie są regularne to dokładnie te elementy
że rząd adT jest mniejszy niż maksymalny możliwy. Rząd można wyliczać przy
pomocy minorów. W szczególności zbiór elementów T ∈ C które nie są regu-
larne jest zbiorem zer pewnego wielomianu (produktu odpowiednich minorów).
Przypomnijmy że mamy

A = C ⊕⊕λ̸=0Aλ.

Jeśli x ∈λ z λ ̸= 0 to adx jest nilpotentny. Mianowicie, adx(Vβ) ⊂ Vβ+λ i
adk

x(Vβ) ⊂ Vβ+kλ. Dla dostatecznie dużego k wszystkie przestrzenie Vβ+kλ będą
zerowe, czyli adk

x = 0. Teraz definiujemy odwzorownie ϕ na C ×
∏

λ Vλ wzorem

ϕ(h, xλ1
, . . . , xλn

) = exp(adxλ1
) . . . exp(adxλn

)h

Zauwamy że elementy w obrazie ϕ mają postać u(h) gdzie u jest automorfizmem
elementarnym zaś h ∈ C. Twierdzimy że pochodna w zerze ϕ jest na. Miano-
wicie, pochodna cząstkowa względem xλk

to identyczność, podobnie pochodna
cząstkowa względem h to identyczność. A więc na mocy Lematu 3.7 z dodatku
obraz zbioru elementów regularnych przez ϕ zawiera zbiór otwarty w topologii
Zariskiego. Niech teraz ϕ1 będzie odwzorowaniem dla C1 a ϕ2 odwzorowaniem
dla C2. Przekrój obrazów zawiera zbiór otwarty w topologii Zariskiego, a więc
jest niepusty. A więc istnieją ui, Ti, i = 1, 2 takie że ui jest automorfizmem
elementarnym zaś Ti jest elementem regularnym w Ci i mamy

u1(T1) = u2(T2)
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czyli
u−1
2 u1(T1) = T2.

Jako że u−1
2 u1 jest automorfizmem, to

u−1
2 u1(C1) = u−1

2 u1((T1)0) = (T2)0 = C2

czyli faktycznie automorfizm elementarny u−1
2 u1 przeprowadza C1 na C2.

2 Forma Killinga i kryterum Cartana

Definicja. Niech A będzie skończenie wymiarową algebrą Liego nad ciałem.
Formę

K(x, y) = Tr(adxady)

nazywamy formą Killinga A.

Lemat 2.1 Forma Killinga jest niezmiennicza:

K([z, x], y) +K(x, [z, y]) = 0.

Dowód:

K([z, x], y)+K(x, [z, y]) = Tr(adzadxady−adxadzady)+Tr(adxadzady−adxadyadz)

= Tr(adzadxady − adxadyadz)

= Tr(adzadxady − adzadxady) = 0.

□

Lemat 2.2 Forma Killinga obcięta do ideału to forma Killinga ideału.

Proof: Dowód zostawiam jako ćwiczenie dla czytelnika. □

Niech A będzie skończenie wymiarową półprostą algebrą Liego nad ciałem
algebraicznie domkniętymi F charakterystki 0 i niech C będzie podalgebrą Car-
tana w C. Mamy wtedy rozkład

A = C ⊕⊕α∈ΛAα

gdzie Λ = {α : α ̸= 0, Aα ̸= {0}}.

Lemat 2.3 (Weyl) Jeśli e ∈ Aα, f ∈ A−α, h = [e, f ], β ̸= 0, Aβ ̸= {0}
to istnieje liczba wymierna rα,β zależna od α, β lecz niezależna od wyboru e, f ,
taka że β(h) = rα,βα(h).
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Dowód: Niech V = ⊕n∈ZAβ+nα. V jest ade, adf i adh niezmiennicza. Skoro
h = [e, f ] to TrV (adh) = 0. Czyli∑

n∈Z

(β(h) + nα(h)) dim(Aβ+nα) = 0

czyli
β(h)

∑
n∈Z

dim(Aβ+nα) = −α(h)
∑
n∈Z

ndim(Aβ+nα)

i

β(h) = −
∑

n∈Z ndim(Aβ+nα)∑
n∈Z dim(Aβ+nα)

α(h)

□

Lemat 2.4 Jeśli A jest algebrą Liego nad ciałem charakterystyki 0, taką że
A = [A,A] to forma Killinga A jest niezerowa.

Dowód: Bez zmniejszania ogólności można zakładać że ciało podstawowe jest
algebraicznie domknięte. Niech C będzie podalgebrą Cartana w A. Mamy

A = ⊕αAα

gdzie A0 = C. Ponieważ dla β ̸= −α mamy [Aα, Aβ ] ⊂ Aα+β założenie że
[A,A] = A implikuje że C = lin[Aα, A−α]. W szczególności istnieje α ̸= 0,
e ∈ Aα, f ∈ A−α takie że h = [e, f ] ̸= 0. Z lematu 2.3 wynika teraz że

K(h, h) =
∑
β

β(h)2 dim(Aβ) = α(h)2
∑
β

r2α,β dim(Aβ).

Suma po β powyżej jest sumą liczb nieujemnych, przy tym rα,α = 1, dim(Aα) >
0, czyli suma jest dodatnia. A więc K(h, h) = 0 implikuje że α(h) = 0 i kon-
sekwentnie dla dowolnego β takiego że Aβ ̸= 0 mamy β(h) = 0. C jest roz-
pinane przez wektory h jak wyżej, gdyby dla dowolnego takiego h zachodziło
K(h, h) = 0 to jedynym α takim że Aα ̸= {0} byłoby 0, czyli A = C byłaby
nilpotentna. Lecz to przeczyłoby warunkowi [A,A] = A. □

Lemat 2.5 (Kryterium Cartana). Jeśli A jest skończenie wymiarową algebrą
Liego nad ciałem charakterystyki 0 to

• A jest rozwiązalna wtedy i tylko wtedy gdy A jest ortogonalne do [A,A]
względem formy Killinga

• A jest półprosta wtedy i tylko wtedy gdy forma Killinga A jest niezdegene-
rowana

Dowód: Jeśli A jest rozwiązalna, to po rozszerzeniu ciało do ciała algebra-
icznie domkniętego, na mocy twierdzenia Liego dla x ∈ A, y ∈ [A,A] operator
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adxady jest nilpotentny, czyli K(x, y) = Tr(adxady) = 0. Jeśli A jest ortogo-
nalne do [A,A] względem formy Killinga, ale A nie jest rozwiązalna to definiując
A0 = A, Ak+1 = [Ak, Ak] dla pewnego k ≥ 1 mielibyśmy Ak = Ak+1 = [Ak, Ak].
Ak są ideałami A, a więc forma Killinga Ak jest obcięciem formy Killinga A do
Ak. Czyli forma Killinga Ak byłaby zerowa. Ale na mocy lematu 2.4 jest to
niemożliwe, co kończy dowód pierwszej części twierdzenia.

Jeśli I ⊂ A jest nietrywialnym ideałem rozwiązalnym to rozważając I0 = I,
Ik+1 = [Ik, Ik] widzimy że A zawierałaby nietrywialny ideał abelowy (takim
ideałem jest Ik z maksymalnym k takim że Ik ̸= {0}). Jeśli I jest ideałem
abelowym, x ∈ A, y ∈ I to I jest podprzestrzenią niezmienniczą dla adx i dla
ady czyli I jest nieziennicze dla adxady. Na I mamy ady = 0 czyli TrI(adxady) =
0. Skoro ady(A) ⊂ I to na przestrzni ilorazowej A/I operator ady indukuje
operator zerowy i

K(x, y) = Tr(adxady) = TrI(adxady) + TrA/I(ādxādy) = 0

gdzie ādx i ādy = 0 są operatorami na A/I indukownymi przez adx i ady. A
więc gdyby A nie była półprosta to forma Killinga K byłaby zdegenerowana.

Pozostaje pokazać że algebra półprosta ma niezdegenerowaną formę Kil-
linga. Nie wprost, gdyby A była półprosta, zaś K byłaby zdegenerowana to
I = {x ∈ A : ∀y∈AK(x, y) = 0} byłby ideałem A z zerową formą Killinga. Na
mocy pierwszej części I byłby ideałem rozwiązalnym, co przeczyłoby półprosto-
cie. Czyli I = {0} i K jest niezdegenerowana. □

Lemat 2.6 Niech A będzie skończenie wymiarową półprostą algebrą Liego nad
ciałem charakterystyki 0 i niech Der(A) będzie algebrą Liego różniczkowań A.
Wtedy odwzorowanie x 7→ adx zadaje izomorfizm A z Der(A)

Dowód: Jądrem odwzorowania x 7→ adx jest centrum A, skoro A jest pół-
prosta to centum jest trywialne i A jest izomorficzne ze swoim obrazem Ã w
Der(A). Ã jest ideałem w Der(A):

[d, adx](z) = d([x, z])− [x, d(z)] = [d(x), z] + [x, d(z)]− [x, d(z)]

= [d(x), z] = add(x)(z).

A więc forma Killinga algebry Der(A) na Ã jest identyczna z formą Killinga
Ã czyli jest niezdegenerowana. Niech I = {d ∈ Der(A) : ∀x∈ÃK(d, x) = 0}.
Mamy wtedy Der(A) = Ã⊕ I. Mianowicie, dla d ∈ Der(A) i x ∈ Ã definujemy
βd(x) = K(d, x). Skoro K jest niezdegenerowana na Ã to istnieje y ∈ Ã taki
że βd(x) = K(y, x). Teraz dla dowolnego x ∈ Ã mamy K(d − y, x) = 0, czyli
d− y ∈ I, co pokazuje że d ∈ Ã+ I. Jako że d jest dowolne to Der(A) = Ã+ I.
Jeśli x ∈ I ∩ Ã to x leży jądrze K obciętego do Ã, co dzieki temu że K jest
niezdegenerowana na Ã oznacza że x = 0, czyli suma Ã+ I jest sumą prostą.

Forma Killinga jest niezmiennicza, a więc I jest ideałem: dla d ∈ I, x ∈ Ã,
z ∈ Der(A) mamy [z, x] ∈ Ã i

K([z, d], x) = −K(d, [z, x]) = 0

czyli [z, d] ∈ I. Teraz dla d ∈ I i x ∈ Ã mamy [d, x] ∈ Ã ∩ I = {0}. Lecz, jak
to obliczyliśmy wyżej [d, adx] = add(x), czyli d = 0, co oznacza że I = {0} i
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Der(A) = Ã. □

Definicja: Mówimy że operator S na przestrzeni wektorowej V jest półprosty
jeśli V ma bazę złożoną z wektorów własnych S.

Lemat 2.7 Jeśli V jest skończenie wymiarową przestrzenią wektorową nad cia-
łem algebraicznie domkniętym zaś A jest operatorem liniowym na V , to istnieją
operatory S i N takie że A = S + N , S jest półprosty, N jest nilpotentny i S
komutuje z każdym operatorem komutującym z A.

Dowód: Jeśli A ma tylko jedną wartość własną a to S = aI i N = A − S
daje żądany rozkład. Mianowicie, skoro A ma tylko jedną wartość własną to
wielomian minimaly A to (X − a)k dla pewnego k, czyli Nk = (A− aI)k = 0 i
N jest nilpotentny. Oczywiście S jest półprosty i komutuje z każdym operatorm
a więc tym bardziej z każdym operatorem komutującym z A.

Jeśli A ma wartości własne a1, . . . , an to niech Vi = {v ∈ V : (A−aiI)
dim(V )v =

0}. Jeśli B komutuje z A to dla v ∈ Vi mamy (A − aiI)
dim(V )Bv = B(A −

aiI)
dim(V )v = 0, czyli Bv ∈ Vi. Innymi słowy, podprzestrzenie Vi są niezmien-

nicze dla B. Lecz V = ⊕Vi czyli jeśli zbudujemy rozkład na każdym z Vi z
osobna to będzie miał żądane własności: skoro Vi są niezmiennicze dla B to S
komutując z B na każdym z Vi z osobna będzie komutował z B. Oczywiście S
będąc sumą prostą operatorów półprostych jest półprosty, N będąc sumą prostą
operatorów nilpotentnych jest nilpotentny. □

Lemat 2.8 Niech A będzie skończenie wymiarową półprostą algebrą Liego nad
ciałem algebraicznie domkniętym charakterystyki 0 i niech C będzie podalgebrą
Cartana w A. Niech A = ⊕αAα gdzie A0 = C. Dla α ̸= −β przestrzenie Aα i
Aβ są ortogonalne względem formy Killinga. Forma Killinga A obcięta do C jest
niezdegenerowana. Ponadto forma Killinga zadaje dualność między Aα a A−α.

Dowód: Wiemy że [Aα, Aγ ] ⊂ Aα+γ , a więc dla x ∈ Aα, y ∈ Aβ mamy
adxady(Aγ) ⊂ Aα+β+γ i (adxady)

k(Aγ) ⊂ Ak(α+β)+γ . Jeśli α ̸= −β dla dowol-
nego γ takiego że Aγ ̸= {0} i dużych k mamy Ak(α+β)+γ = {0}, czyli adxady

jest nilpotentny, czyli K(x, y) = Tr(adxady) = 0. Skoro forma Killinga jest nie-
zdegenerowana zaś dla α ̸= −β Aα jest ortogonalne do Aβ to A−α musi być
dualne do Aα. W szczególności dla α = 0 oznacza to że forma Killinga obcięta
do C jest niezdegenerowana. □

3 Dodatek o topologii Zariskiego

Głownym celem dodatku jest dowód Lematu 3.7. Można by podać inne dowody,
ten używa tylko podstawowy materiał z algebry i przynajmniej teoretycznie jest
konstruktywny, tzn. można by jawnie wyliczyć odpowiednie wielomiany defi-
niujące zbiory którch istnienie dowodzimy. Alternatywny dowód można podać
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zauważając że Lemat 3.5 jest szczególnym przypadkiem twierdzenia o elimina-
cji kwantyfikatorów dla teorii ciał algebraicznie domkniętych, zaś to twierdzenie
ma relatywnie prosty dowód metodami teorii modeli.

Definicja. Niech W będzie skończenie wymiarową przestrzenią wektorową
nad ciałem. Powiemy że zbiór F ⊂ W jest domknięty w topologii Zariskiego
(albo krócej domknięty) jeśli jest zbiorem zer pewnego układu wielomianów.

Zauważmy że jeśli pewien zbiór wielomianów G zeruje się na F to również
ideał pierścieniu wielomianów generowany przez G zeruje się na F . Zgodnie z
twierdzeniem Hilberta o bazie ideały w w pierścieniu wielomianów ustalonej
skończenej liczny zmienny są skończenie generowalne, więc zbiór domknięty w
topologii Zariskiego jest zbiorem zer skończonego układu wielomianów. Dany
zbiór może być zbiorem zer wielu różnych ideałów. Największy ideał dostaniemy
biorąc wszystkie wielomiany zerujące się na F , ten ideał oznaczamy niekiedy
przez I(F ).

Zauważmy też że dowoly przekrój zbiorów domkniętych w topologii Zari-
skiego oraz skończona suma zbiorów domkniętych w topologii Zariskiego jest
domknięta w topologii Zariskiego. Mianowicie, przekrój zbiorów zer ideałów
Iα jest równy zbiorowi zer

⋃
α Iα. Dla sumy korzystamy z tego że zbiór do-

mknięty jest zbiorem zer skończonego układu wielomianów. Jeśli F jest zbio-
rem zer p1, . . . , pk, zaś G jest zbiorem zer q1, . . . , gl, to F ∪ G jest zbiorem
zer {piqj : i = 1, . . . , k, j = 1, . . . , l}. Pokazuje to że suma dwu zbiorów do-
mknętych jest domknięta. Ponadto zbiór pusty jest domknięty jako zbiór zer
wielomianu stale równego 1 i całe W jest domknięte jako zbiór zer wielomianu
zerowego. A więc zbiory domknięte dają nam topologię na W którą nazywamy
topologią Zariskiego. Jak zwykle w topologii mówimy że zbiór jest otwary jeśli
jego dopełnienie jest domknięte.

Definicja. Powiemy że zbiór F domknięty w topologii Zariskiego jest nie-
rozkładalny jeśli nie da się go przedstawić jako sumy dwu zbiorów domkniętych
w topologii Zariskiego F1, F2, takich że Fi ̸= F .

Zauważmy że jeśli zbiór nierozkładalny F jest zawarty w skończonej sumie
zbiorów domkniętych w topologii Zariskiego Fi to istnieje i takie że F ⊂ Fi.
Mianowicie, zastępując Fi przez F ∩ Fi można zakładać że suma Fi jest równa
F . Dla dwu składników wynik teraz dostajemy z defincji nierozkładalności, zaś
dla większej ilości składników używamy indukcję.

Lemat 3.1 Jeśli zbiór F jest nierozkładalny to ideał I(F ) wszystkich wielomia-
nów zerujących się na F jest pierwszy.

Dowód: Niech p1 i p2 będą wielomianami takimi że p1p2 ∈ I(F ), czyli dla każ-
dego w ∈ W mamy p1p2(w) = 0. Dla i = 1, 2 niech Fi = {w : pi(w) = 0}. Jeśli
w ∈ F to albo p1(w) = 0 i wtedy w ∈ F1, albo p2(w) = 0 i wtedy w ∈ F2.
A więc F ⊂ F1 ∪ F2. Jako że F jest nierozkładalny oznacza to że F ⊂ F1 lub
F ⊂ F2. Jeśli F ⊂ F1 to p1 jest zerem na F , czyli p1 ∈ I(F ). Podobnie, jeśli
F ⊂ F2 to p2 ∈ I(F ). Jako że p1, p2 były dowolne oznacza to że I(F ) jest ide-
ałem pierwszym. □

Lemat 3.2 Jeśli F jest domknięty w topologii Zariskiego to jest on skończoną
sumą zbiorów nierozkładalnych.
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Dowód: Przypuśćmy że zbioru F nie da się przedstawić jako skończonej sumy
zbiorów nierozkładalnych. Wtedy F można by przedstawić jako sumę mniej-
szych zbiorów z których co najmniej jeden nie byłby skończoną sumą zbiorów
nierozkładalnych. Indukcyjnie otrzymalibyśmy nieskończony ciąg zbiorów do-
mkniętych Fi takich że F = F1, Fi+1 ⊂ Fi i Fi ̸= Fi+1. Niech Ii = I(Fi)
będą odpowiadającymi im ideałami. Mamy Ii ⊂ Ii+1 i skoro Fi ̸= Fi+1 to
Ii ̸= Ii+1. Ale pierścień wielomianów jest noetherowski, czyli nie istnieje nie-
skończony wstępujący ciąg ideałów, co daje sprzeczność która kończy dowód. □

Lemat 3.3 Niech W będzie skończenie wymiarową przestrzenią wektorową nad
ciałem algebraicznie domknętym K. Jeśli T, V ⊂ W×K są zbiormi domkniętymi
w topologii Zariskiego, takimi że T jest nierozkładalny i T − V ̸= ∅, zaś S jest
rzutem T − V na W to istnieją podzbiory F,G ⊂ W domknięte w topologii
Zariskiego, takie że S ⊂ F , F − G ⊂ S i domknięcie Zariskiego F − G to F .
Przy tym F jest nierozkładalny.

Dowód: Niech π oznacza operator rzutowania na W . Jako F bierzemy domknię-
cie π(T − V ) w topologii Zariskiego. Zauważmy że π(T ) ⊂ F . Mianowicie
T ⊂ π−1(F ) ∪ V . Jako że T jest nierozkładalny to zawiera się w jednym ze
składników sumy. Ale T ⊂ V jest wykluczone przez założenie T − V ̸= ∅, czyli
T ⊂ π−1(F ) co oznacza że π(T ) ⊂ F . F jest nierozkładalny. Mianowicie przy-
puśćmy że F = F1 ∪ F2 z domkniętymi Fi. Wtedy mamy T = T1 ∪ T2 gdzie
Ti = π−1(Fi)∩ T . T jest nierozkładalny, czyli T jest równe jednemu ze składni-
ków, powiedzmy T1. Wtedy π(T ) = π(T1) ⊂ F1, czyli F = F1 co oznacze że F
faktycznie jest nierozkładalny. Zauważmy że jeśli G jest zbiorem domkniętym
takim że F −G ̸= ∅, to domknięcie F −G w topologii Zariskiego jest równe F .
Mianowicie, oznaczając domknięcie przez H mamy F ⊂ H ∪G. Jako że F jest
nierozkładalny i nie jest podzbiorem G to F jest podzbiorem H, czyli F = H.

A więc pozostaje znaleźć zbiór domknięty G taki że F −G ⊂ π(T −V ). Wie-
lomiany zadające T i V możemy traktować jako elementy pierscienia K[W,x]
wielomianów od x i zmiennych z W . Podobnie wielomiany zadające F są elemen-
tami pierscienia K[W ] wielomianów od zmiennych z W który możemy traktować
jako podpierścień K[W,x]. Niech I będzie zbiorem elementów K[W,x] zerują-
cych się na T zaś M będzie zbiorem elementów K[W ] zerujących się na F . Ele-
menty M potraktowne jako elementy K[W,x] zerują się na T (bo π(T ) ⊂ F ),
a więc M ⊂ I. Zauważmy że jest możliwe I = K[W,x]M . Ten przypadek jest
łatwy, wtedy T = F ×K. Z założenia istnieje wielomian p taki że p zeruje się
na V ale istnieje (w, k) ∈ T takie że p(w, k) ̸= 0. Jeśli p nie zależy od x to jako
G można wziąść zbiór zer p. Jeśli p zależy od k to przy ustalonym w ∈ F ma
tylko skończnie wiele zer, czyli istnieje k ∈ K takie że p(w, k) ̸= 0, co ozna-
cza że π(T − V ) = π(T ) = F . A więc w dalszym ciągu możemy zakładać że
I ̸= K[W,x]M .

Pierścień K[F ] funkcji regularnych na F to K[W ]/M . Jako że F jest nieroz-
kładalny to (Lemat 3.1) M jest ideałem pierwszym i K[W ]/M nie ma dzielników
zera. A więc pierścień KF ułamków K[F ] jest ciałem. Teraz rozpatrujemy pier-
ścień KF [x] wielomianów jednej zmiennej x o współczynnikach w ciele KF . Za-
uważmy że elementy K[W ] naturalnie odwzorowują się w KF . To się przedłuża
do homomorfizmu j : K[W,x] → KF [x]. Zauważmy że KF [x] = j(K[W,x])KF
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(pokazujemy to sprowadzając współczynniki elementu KF [x] do wspólnego mia-
nownika który daje element KF ).

Zbiór J = j(I)KF jest ideałem w KF [x]. J jest niezerowy, bo j−1({0}) =
K[W,x]M ̸= I. Wiadomo że KF [x] jest pierścieniem ideałów głównych, czyli
istnieje niezerowy wielomian g ∈ KF [x] taki że g generuje J . Jako że KF [x] =
j(K[W,x])KF to g można wybrać postaci j(h) dla pewnego h ∈ I. Twierdzimy
że g jest nierozkładalny. Mianowicie rozkład g = g1g2 w KF [x] po sprowadze-
niu do wspólnego mianownika prowadziłby do równości rj(h) = sj(h1)j(h2) w
K[F ][x] dla pewnych r, s ∈ K[F ] − {0} i h1, h2 ∈ K[W,x], co prowadziłoby do
równości

th− uh1h2 = p

gdzie p jest elementem K[W,x] takim że j(p) = 0 zaś obrazy t i u w K[F ]
to odpowiednio r i s. W szczególności r, u /∈ M zaś wszystkie współczynniki p
traktowanego jako wielomian od x o współczynnikach z K[W ] należą do M . A
więc p zeruje się na F ×K, czyli również na T . A więc na T mamy równość

th− uh1h2 = 0

czyli uh1h2 ∈ I. Jako że T jest nierozkładalny, to I jest ideałem pierwszym,
czyli jeden z czynników należy do I. Gdyby któreś hi ∈ I to g nie był by
generatorem J , co daje sprzeczność. Gdyby u ∈ I, to u zerowałoby się na π(T ),
czyli u ∈ M co też daje sprzeczność. A więc przypuszczenie że g jest rozkładalny
daje sprzeczność, czyli g jest nierozkładalny.

Teraz twiedzimy że jeśli q ∈ K[W,x] i g|j(q) w KF [x] to q ∈ I. Mianowicie
wtedy w K[F ][x] mamy równość postaci

rj(q) = sj(h)j(q2)

z r, s ∈ K[F ]− {0} i q2 ∈ K[W,x], co prowadzi do równości postaci

tq − uhq2 = p

z p zerującym się na F ×K (a więc i na T ), czyli na F ×K mamy równość

tq − uhq2 = 0

czyli tq ∈ I. Jako poprzednio t ∈ I jest niemożliwe, więc skoro I jest pierwszy
to q ∈ I.

Zauważmy że gdyby J = KF [x], czyli g miałby stopień 0, to I = K[W,x].
Ale zakładamy że T jest niepusty, więc I ̸= K[W,x], czyli g ma stopień dodatni.

Jeśli q ∈ I, to istnieje f ∈ K[W ]−M takie że jeśli (w, k) ∈ F ×K są takie
że f(w) ̸= 0 i h(w, k) = 0 to q(w, k) = 0. Mianowicie, to skoro g generuje J to
g dzieli j(q) w KF [x] czyli jak wyżej na F ×K mamy równość

tq − uhq2 = 0

czyli
t(w)q(w, k) = u(w)h(w, k)q2(w, k).

Jeśli h(k,w) = 0 to prawa strona jest zerem, czyli t(w)q(w, k) = 0. Jeśli ponadto
t(w) ̸= 0 to q(w, k) = 0. A więc wystarczy wziąść f = t.
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Zauważmy że można wybrać f wspólne dla wszystkich elementów I. Miano-
wicie, I ma skończony zbiór generatorów q1, . . . , qn. Wybieramy fi dla qi. Wtedy
f = f1 . . . fn działa dla wszystkich qi. Jeśli generatory I zerują się na (k,w) to
wszystkie elementy I zerują się na (k,w). Podsumowując, istnieje f ∈ K[W ]−M
takie że jeśli (w, k) spełnia f(w) ̸= 0 i h(w, k) = 0 to (w, k) ∈ T . Mianowicie,
wtedy dla dowolnego q ∈ I mamy q(w, k) = 0. Jako że T jest zbiorem zer I
oznacza to że (w, k) ∈ T .

Niech teraz N będzie ideałem elementów K[W,x] zerujących się na V i niech
q1, . . . , qn będą generatorami N . Gdyby g dzielił wszystkie j(qi) to mielibyśmy
qi ∈ I, czyli T ⊂ V co jest niemożliwe z założenia. A więc istnieje i takie że g
nie dzieli qi. Wybieramy jedno takie i i dla uproszczenia oznaczeń dalej zamiast
qi będziemy pisać q.

Jako że g jest nierozkładalny i nie dzieli j(q) to ideał generowany przez q
i j(q) w KF [x] to całe KF [x], czyli ten ideał zawiera 1. A więc istnieją v, w ∈
KF [x] takie że

vj(q) + wg = 1.

Używając własność KF [x] = j(K[W,x]KF i sprowadzając lewą stronę do wspól-
nego mianownika widzimy że istnieją a, b ∈ K[W,x] i r, s, p ∈ K[F ]− {0} takie
że

rj(a)j(q) + sj(b)j(h) = p

Jak poprzedznio, daje to równość

taq + ubh = v

na F ×K z t, u, v ∈ K[W ] które nie są tożsamościowo równe zero na F .
Niech z ∈ K[W ] będzie wspólczynnikiem przy najwyższej potędze x w h

(który możemy potraktować jako element K[W ]). h możemy wybrać tak by z
nie należał do M . Mianowicie, wybieramy h minimalnego stopnia względem x
ale tak by dostać to samo j(h). Gdyby z ∈ M to j(zzk) = 0 i można by zastąpic
h przez wielomian niższego stopnia względem x.

Niech teraz G będzie zbiorem zer fvz. Z założeń wyżej f, v, z /∈ M , czyli
jako że M jest pierwszy fvz /∈ M , czyli fvz nie zeruje się tożsamościowo na
F , czyli F − G ̸= ∅. Niech teraz w ∈ F − G. w /∈ G oznacza że fvz(w) ̸= 0
i w szczególności z(w) ̸= 0. A więc przy ustalonym w wielomian h(w, x) jest
wielomianem jednej zmiennej x dodatniego stopnia. Jako że K jest algebraicznie
domknięte to istnieje k ∈ K takie że h(w, k) = 0. Mamy fvz(w) ̸= 0 i h(w, k) =
0, w szczególności f(w) ̸= 0, czyli jak pokazaliśmy poprzednio (w, k) ∈ T . Jako
że h(w, k) = 0, to w równości wyżej człon ubh znika w (w, k), czyli jako że
v(w) ̸= 0 to

t(w)a(w, k)q(w, k) = v(w) ̸= 0

czyli q(w, k) ̸= 0, czyli (w, k) /∈ V . A więc dla dowolnego w ∈ F −G znaleźliśmy
k takie że (w, k) ∈ T − V , czyli w ∈ π(T − V ), czyli F −G ⊂ π(T − V ). □

Lemat 3.4 Niech W będzie skończenie wymiarową przestrzenią wektorową nad
ciałem algebraicznie domknętym K. Jeśli U ⊂ K × W jest niepustą różnica
zbiorów domkniętych w topologii Zariskiego, zaś S jest rzutem U na W to istnieją
podzbiory F,G ⊂ W domknięte w topologii Zariskiego, takie że S ⊂ F , F−G ⊂ S
i domknięcie Zariskiego F −G to F .
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Dowód: Niech U = T − V gdzie T i V są domknięte. Na mocy Lematu 3.2 T
jest skończoną sumą zbiorów nierozkładalnych Ti:

T =
⋃
i

Ti.

Niech π oznacza operator rzutowania na W . Do par Ti, V stosujemy Lemat
3.3 otrzymując nierozkładalne Fi i domknięte Gi. Zastępując Gi przez Gi ∩ Fi

możemy zakładać że Gi ⊂ Fi. Bierzemy

F =
⋃
i

Fi,

G =
⋃
i

Gi.

Na mocy Lematu 3.3 π(Ti−V ) ⊂ Fi ⊂ F , czyli również π(T−V ) ⊂ F . Podobnie
Fi − Gi ⊂ π(Ti − V ) ⊂ π(T − V ), czyli F − G ⊂ π(T − V ). Niech H będzie
domknięciem F −G w topologii Zariskiego. Ustalmy i takie że zbiór Fi nie jest
zawarty w żadnym Fj dla j ̸= i. Fi jest zawarty w H ∪ G = F ∪ G. Jako że
Fi jest nierozkładalny to jest zawarty w jednym ze składników sumy. Fi ⊂ G
oznaczałoby że istnieje j takie że Fi ⊂ Gj , czyli skoro Gj ⊂ Fj to Fi ⊂ Fj .
Ale i było wybrane tak że Fi nie jest podzbiorem Fj , więc ten przypadek jest
niemożliwy. Czyli Fi ⊂ H. W sumie Fi bez zmiany sumy możemy pominąć
składniki zawarte w innych składnikach, więc cała suma Fi jest zawarta w H,
czyli H = F , czyli domknięcie F −G to F . □

Lemat 3.5 Niech V i W będą skończenie wymiarowymi przestrzeniami wekto-
rowymi nad ciałem algebraicznie domknętym K. Jeśli U ⊂ V ⊕W jest niepustą
różnicą zbiorów domkniętych w topologii Zariskiego, zaś S jest rzutem U na W to
istnieją podzbiory F,G ⊂ W domknięte w topologii Zariskiego, takie że S ⊂ F ,
F −G ⊂ S i domknięcie Zariskiego F −G to F .

Dowód: Indukcja ze względu na dim(V ). Jeśli dim(V ) = 1 to wynik otrzymujemy
z Lematu 3.4. Jeśli dim(V ) > 1 to piszemy V = Kv ⊕ V1 gdzie V1 ⊂ V jest
podprzestrzenią wymiaru dim(V )−1 zaś v ∈ V −V1. Niech W1 = V1⊕W , niech
π1 będzie rzutem z K × W1 na W1 i niech S1 = π1(U). Na mocy Lematu 3.4
istnieją zbiory F1, G1 ⊂ W1 domknięte w topologi Zariskiego, takie że S1 ⊂ F1,
F1 −G1 ⊂ S1 i domknięcie Zariskiego F1 −G1 to F1.

Biorąc U1 = F1 −G1 widzimy że U1 jest niepustą różnicą zbiorów domknię-
tych. Niech π2 będzie rzutem z W1 na W i niech S2 = π2(U1). Stosując założenie
indukcyjne otrzymujemy zbiory F , G takie że S2 ⊂ F i F − G ⊂ S2 oraz do-
mknięcie Zariskiego F −G to F . Oczywiście S2 ⊂ S więc F −G ⊂ S. Zauważmy
że przeciwobraz π−1

2 (F ) jest zbiorem domkniętym i zawiera U1 = F1 − G1,
więc zawiera też domknięcie F1 − G1 czyli F1. Lecz π1(U) = S1 ⊂ F1, czyli
π1(S) ⊂ π−1

2 (F ) czyli S = π2π1(U) ⊂ F . □

Lemat 3.6 Niech ϕ : V → W będzie odwzorowaniem wielomianowym skończe-
nie wymiarowych przestrzeni wektorowych nad ciałem K takim że istnieje punkt
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v ∈ V że pochodna ϕ w v jest na. Niech p będzie wielomianem na W takim że
p ◦W = 0. Wtedy p = 0.

Dowód: Przesywając w V i W można zakładać że v = 0 i że ϕ(0) = 0. Zapisujemy
p jako sumę wielomianów jednorodnych

p =

l∑
i=k

pi

gdzie pi ma stopień i i pk ̸= 0. Podobnie

ϕ =

m∑
i=1

ϕi

gdzie ϕi jest stopnia i. Jako że ϕ(0) = 0 to w wyrażeniu na ϕ nie ma członu
stopnia 0. Zauważmy że

p ◦ ϕ = pk ◦ ϕ1 + r

gdzie wszystkie człony r mają wyższy stopień niż k. Dzięki temu że ϕ1 jest na
pk ◦ ϕ1 ̸= 0. Jako że pk ◦ ϕ1 jest stopnia k to nie może się uprościć z r. A więc
p ̸= 0 implikuje p ◦ ϕ ̸= 0. □

Lemat 3.7 Niech ϕ : V → W będzie odwzorowaniem wielomianowym skończe-
nie wymiarowych przestrzeni wektorowych nad ciałem algebraicznie domknętym
K takim że istnieje punkt v ∈ V że pochodna ϕ w v jest na. Jesli U jest zbio-
rem który zawiera niepusty zbiór otwarty w topologii Zariskiego to ϕ(U) zawiera
niepusty zbiór otwarty w topologii Zariskiego.

Dowód: Niech D ⊂ V ×W będzie wykresem ϕ:

D = {(v, w) : ϕ(v) = w}

Niech Z będzie niepusty zbiór otwartym zawartym w U . Z definicji D jest sbio-
rem domkniętym. Niech H = Z × W . Oczywiście H jest niepustym zbiorem
otwartym w V ×W , czyli D ∩H jest różnicą zbiorów domkniętych. Jako że ϕ
jest zdefiniowane na całym V a Z jest niepusty to również D ∩H jest niepusty.
Oczywiści S = ϕ(Z) jest rzutem D ∩H na W , a więc na mocy Lematu 3.5 ist-
nieją zbiory domknięte F i G takie że S ⊂ F , F −G ⊂ S i F jest domknięciem
F − G. Pozostaje pokazać że F = W (wtedy F − G jest niepustym zbiorem
otwartym). Niech p będzie wielominem zerującym się na F . Wtedy p ◦ ϕ zeruje
się na W , czyli jako że K jest nieskończone to p ◦ ϕ = 0. A więc na mocy Le-
matu 3.6 również p = 0. Ale to oznacza że jedyny wielomian zerujący się na F
to wielomian zerowy, czyli faktycznie F = W . □
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