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1 Struktura algebr poélprostych
Przypominam lemat z poprzednich notatek:

Lemat 1.1 Niech A bedzie skoriczenie wymiarowq potproste algebrg Liego nad
ciatem charakterystyki 0 i niech Der(A) bedzie algebrq Liego rézniczkowan A.
Wtedy odwzorowanie x +— ad, zadaje izomorfizm A z Der(A)

Lemat 1.2 Niech A bedzie skoniczenie wymiarowq pdtprostq algebrg Liego nad
ciatem algebraicznie domknietym charakterystyki 0 i niech C' bedzie podalgebrg
Cartana w A. C jest przemienna i dla x € C operator ad, jest potprosty.

Dowéd: Dla z,y € C mamy
K(z,y) =Y a(z)a(y) dim(4,)

Jesli y € [C,C] to wtedy a(y) = 0 dla dowolnego o takiego ze A, # {0}.
A wiec wtedy K(z,y) = 0, czyli y = 0 bo forma Killinga obcieta do C' jest
niezdegenerowana. Konsekwentnie [C, C] = {0} i C jest przemienna.

Dla x € C niech ad, = S + N bedzie rozkladem ad, na czesé potprosta i
nilpotentna. S jest rozniczkowaniem A: dlay € A, z € Ag mamy [y, 2] € Aa+3s,
S(y) = alo)y, S(z) = Alx)z a wiec

S([y: 2) = (a+ B)(@)ly, 2] = [a(x)y, 2] + [y, B(x)z] = [S(y), 2] + [y, S(2)]-

Na mocy 1.1 istniejg s,n € A takie ze ads = S'iad, = N. S komutuje z kazdym
operatorem komutujacym z ad,, a wiec w szczegolnodci S komutuje z ad, dla
dowolnego y € C. A wiec jeszcze raz uzywajac 1.1 widzimy ze s komutuje z
C, czyli s nalezy do normalizatora C, czyli s € C. Skoro x = s + n to réwniez
n € C. Jednakze ad,, jest nilpotentny, czyli a(n) = 0 dla « takich ze A, # {0},
czyli jak poprzednio n = 0, co oznacza ze ad, = S jest pélprosty. O

Niech A = {a # 0: A, # {0}}. Przy zalozeniach jak wyzej forma Killinga
jest niezdegenerowana na C, a wiec dla o € A istnieje dokladnie jeden h, € C
takie 7e a(x) = K (hq,x) dla dowolnego z € C.

Lemat 1.3 o Jesliec Ay, fEA_ tole, fl=Kl(e, fha.

o a(ha) #0



o {ho:a € A} rozpina C

o Jeslieec Ay, [ € A_y, K(e, f) # 0 to podalgebra A generowana przez e,
f i hy jest izomorficzna z s1(2, F)

e Przestrzenie A, sq jednowymiarowe
o Jesli a,tao e Atot € {—1,1}
o Jeslia,5 € A to 2K (ha, hg)/K(ha, ha) jest liczbg catkowitq

Dowo6d: Niech e € A, f € A_,. Dla x € C mamy

K(le, fl,z) = =K(f, e, z]) = a(x)K(f, ) = K(f,€) K (ha, )

czyli K([e, f]—K (e, f)ha,x) = 0 co na mocy niezdegenerowania K na C oznacza
ze le, f] = K (e, f)ha. A wiec pokazaliSmy pierwszy punkt.

Na mocy lematu Weyla dla dowolnego f € A mamy B(hq) = capa(ha),
czyli a(hy) = 0 implikowatoby S(h,) = 0, czyli (jak w dowodzie 1.2) h,, bytoby
ortogonelne do C wzgledem formy Killinga i h, = 0. Lecz « # 0, wiec hy # 0
co oznacza ze a(hq) # 0.

A jest polprosta, wiec A = [A, A] = lin[A,, Ag] Dla a # —S dostajemy
sktadniki rozktadu rézne od C, a wiec C' = lingxo[Aqa, A—o]. Na mocy poprzed-
nigo punktu [A,, A_,] jest rozpinane przez h,, czyli C = lin{h, : a € A}.

Aby pokaza¢ czwarty punkt niech g = 2f/(a(hq)K (e, f)). Wtedy K(e,g) =
K(e, f)/(a(ha)K(e, [)) = 2/a(ha), h = [e,g] = K(e,9)ha = 2ha/a(ha) i
a(h) = 2a(hy)/alhs) = 2. A wiec [h,e] = a(h)e = 2e i [h,g] = —a(h)g = —2¢g
co oznacza ze h,e, g spelniaja te same relacje komutacji co

1 0 0 1 00
R Rl
czyli h— H, e~ X, g — Y zadaje izomorfizm.
Przypusémy teraz ze A, ma wymiar wiekszy niz 1. Wtedy istniatby z €

A, taki ze z # 0, lecz K(z,9) = 0. A wiec [g,2] = K(2,9)ha = 0, czyli
z generowaly skonczenie wymiarowy modul M nad sl(2, F') taki ze wszystkie

wartosci wlasne h bylyby dodanie. Doktadniej niech zg = 01 zx4+1 = e, 2i].
Zauwazmy ze istnieja stale ¢y, takie ze [g, zi] = crzi—1 dla k > 0 (gdzie ¢ =0 i
z_1 = 0). Mianowicie indukcyjnie [g, zx+1] = [9, [, 2k]] = [[g, €], zk]+]e, [g, 2x]] =

—[h, 2] + [e, crzr_1] = —2kzy + crzp czyli M = lin{ad”(2) : k € Z,k > 0} bo
ta podprzestrzen jest niezmiennicza na dzialtanie h, e, g. Ale taki modut M nie
istnieje co oznacza ze przestrzen A, jest jednowymiarowa.

Podobnie, jesli A, jest nietrywialne to h musi mieé¢ catkowita wartos¢ wtasna
na Aiq, czyli 2t € Z. Ale rola « i ta jest symetryczna, czyli rowniez 2/t € Z.
Gdyby ¢t = 2 to Az, = adc(A,) lecz jest to niemozliwe bo A, jest rozpinane

przez e i ad.(A,) = {0}. Przez symetrie wykluczone jest réwniez t = —2,
t=1/2,it = -1/2. A wiec jedne mozliwosci ktore pozostaja to t = —1 lub
t=1.

Aby pokazaé ostatni punkt rozwazmy podalgebre A generowang przez hq, e,
f. Jak wiemy ta algebra jest izomorficzna z s1(2, F'). Niech H = 2ho/K (hq, ha)-
Z opisu skoriczenie wymiarowych modutéw nad sl(2, F') wiemy ze w dowolnym
takim module H ma catkowite wartosci wtasne. Rozwazmy dziatanie H na z €



Ag: [H,z] = 28(ha)/K (ha, ha) = 2K (hg, ha)/ K (has ha), czyli 2K (hg, ha) /K (ha, ha)
jako wartosé¢ wlasna H jest liczba catkowita. O

Przyklad: Niech g = sl(3,C). Wiadomo ze macierze diagonalne o $ladzie 0
daja podalgebrg Cartana C' w g. Niech

A0 0
a = 0 )\2 0
0 0 A3

i niech e; dla i,k € {1,2,3}, i # k bedzie macierza taka ze na przecieciu
wiersza i i kolumny k jest 1 a pozostale elementny sg zerami. Latwo sprawdzié
ze [a,e; 1] = (A — Ag)ei k. A wiec funkcjonaly pierwastkowe to a; ;= Ay — Ak
za$ odpowiednia przestrzen V,, , jest jednowymiarowa i rozpinana przez e; j.
Jest sze$¢ macierzy e; 7 ¢ # k, razem 7z macierzami z C' daje to rozklad g na
sume prosta. Jako ze g sktada sie na macierzy o §ladzie 0 to dla a z C' zachodzi
A+ A2+ A3 =0. AWiQC

K(a, a) = 2 (()\1 — )\2)2 —+ ()\1 — )\3)2 =+ ()\2 — )\3)2) =
2((A = X2)? + (M = A3)+ (A2 — A3)?) +2(M + Ao+ X3)° =

6(AF 4+ A2+ \2)

czyli forma Killinga na C to 6 razy obciecie do C euklidesowego produktu ska-
larnego. W szczegolnosci h, to % o. Jawnie, gdy a2 jest reprezentowany jako
wektor w C® mamy

041,2 = (1; 7150)7
czyli
1
hlll,z = 6(17*170)'
Podobnie
1
hlll,s = 6(17(), 71))
1
haz,s = 6(05 17 _1)
i hogy = —hon sy, hass = —has s hags = —hay,. Widaé e K(he,he) = 1.

Qg 3+

Podobnie K (ha, 5, ha, s = % 1 K(hay 55 hays) = —5. Wynika stad ze kat miedzy
ha, , & he, , jest rowny 7/3, za$ kat miedzy ha, , i ha, , jest rowny 27/3. A wiec
odpowiednio uporzadkowane « sg wierzchotkami sze$ciokata réwnobocznego.

Mozna to zilustrowaé nastepujacym obrazkiem:



h 23 h 13

Lemat 1.4 a(h,) € Q i a(ha) > 0. Niech V = ling{h : a € A}. Forma
Killinga obcieta do V' przyjmuje wartosci wymierne i jest dodatnio okreslona.
Ponadto, jesli S C A i A ={hy : a € S} jest bazg C nad F, to A jest bazg V.

Dow6d: a(ha) = K (hasha) = Y gep B(ha)® =X e (Ta,pa(ha))? czyli
1

a(ha) = =3
ZBGA Tgc,,@

wiec a(hy) € Qi alhy) > 0.

Jesli h = 3" qaha, to B(h) = 3, sep daTa,plha) czyli B(h) € Q. Jesl
hi,hes €V to K(hl,hQ) = Zﬁe/\ﬁ(h‘l)ﬁ(}m) eQi K(h,h) = ZﬁeAﬁ(h)2 > 0.
Jesli K(h,h) = 0 to dla kazdego 8 € A mamy S(h) = 0 i h jest ortogonalne
wzgledem formy Killinga do C, czyli h = 0.

Niech A jak wyzej bedzie baza C nad F, V = ling(A) i niech g € A. Dla
he € A mamy B(hy) = K(hg,ho) € Q czyli 8 € V*, czyli istnieje h € V
taki ze S(h) = K(h,h) dla h € V. Jednakie A C V jest baza C nad F, wiec
B(h) = K(h,h) dla h € C, czyli h = hg, a wiec hg € V. O



Niech V bedzie skoniczenie wymiarowsa przestrzenia nad cialem F' charakte-
rystyki 0. Zakladamy ze na V jest zadany iloczyn skalarny. Dla wektora v € V/
odbicie o, w kierunku v definiujemy wzorem

(v, z)v
(v, 0)

gdzie zaktadamy ze (v,v) # 0. Dla F = R jest to klasyczna definicja, ale te
same wtlasnosci dostaniemy dla innych cial.

oy(x) =2 —2

Lemat 1.5 Istnieje automorfizm ¢ : A — A taki ze ¢$(C) = C, ¢(ha) = —ha
i ¢(h) = h dla h € C takich ze a(h) = 0. Innymi stowy, ¢|c jest odbiciem w
kierunku h,,.

Dowdéd: Wybieramy e € A,, f € A_,, tak by a(le, f]) = 2. Wtedy podalge-
bra A generowana nad Q przez [e, f], e, f jest izomorficzna z s1(2, Q). Niech

1 0 0 1 0 0
a=lo W) x=fos] =00

Przy izomorfizmie [e, f] przechodzi na H, e przechodzi na X, f przechodzi
na Y. Zauwazmy ze ad. i ady sg nilpotentnymi automorfizmami A, dlatego
Y1 = exp(ad.) = Y ad¥/k! i ¢9 = exp(—ady) = Y (—ads)*/k! sa dobrze zde-
finowanymi automorfizmami A. Pokazemy ze ¢ = 11211 jest pozadanym au-
tomorfizmem. Mianowicie, jesli h € C' i a(h) = 0 to [h,e] = [h, f] = 0, czyli
ade(h) = adg(h) = 0 i konsekwentnie ;1 (h) = t2(h) = 0, wiec ¢(h) = h.
Pozostaje pokazaé ze ¢([e, f]) = —le, f]. Dzieki izomorfizmowi algebry genero-
wanej przez [e, f],e, f z sl(2,Q) jest to ¢wiczenie na mnozenie macierzy 2 na
2. Doktadniej, wystarczy wykonaé¢ obliczenia uzywajac adx i ady zamiast ad,
i ady. Dla Z € sl(2,Q) mamy adx(Z) = XZ — ZX = Lx(Z) — Rx(Z) gdzie
Lx jest operatorem mnozenia z lewej strony, za§ Rx operatorem mnozenia z
prawej strony. Poniewaz mnozenie z lewej komutuje 7z mnozeniem 7 prawej many
exp(adx) = Lexp(x)Rexp(—x) 1 konsekwentnie ¢([e, f]) przechodzi przy izomor-
fizmie na Lexp(x) exp(~Y) exp(X) Rexp(—X) exp(v) exp(—x)H . Teraz

()= | o 1 |
exp(—Y) = [ ,11 (1) ]
exp(X) exp(—Y) exp(X) = [ —01 (1) }

10
Lexp(x) exp(=Y) exp(X) Rexp(—X) exp(¥) exp(—x) H = { 0 1 ] =—H.

Definicja: Niech V bedzie jak w definicji odbicia. Méwimy 7ze skonczony
podzbior A C V jest systemem pierwiastkéw jesli 0 ¢ A, A rozpina V i dla
kazdego v € A mamy o,(A) C A. Moéwimy ze A jest krystalograficzny jesli



2(a, 8)/{B, B) € Z dla dowolnych «, 8 € A. Mowimy ze A jest zredukowany jesli
dla o, ta € A implikuje ze t € {—1,1}.

Definicja: Niech A C V bedzie systemem pierwiastkow. Grupe generowang
przez operatory o, gdzie v € A nazywamy grupa Weila systemu A.

Definicja Powiemy ze uktad pierwiastkéw A na V jest rozkladalny, jesli
V=VieVoaiA=AUAy gdzie A;, = ANV, dlai = 1,2. Powiemy ze uklad
pierwiastkdéw jest nierozktadalny jesli nie jest rozkladalny.

Lemat 1.6 Jesli A jest uktadem pierwiastkéw na V to istniejg podprzestrzenie
Vi i uktady pierwiastkow A; na V; takie ze

V — @i‘/h

A=A

i A; jest mierozktadalny. Taki rozktad jest jednoznaczny. Ponadto, jesli A jest
uktadem pierwiastkéw algebry Liego A jak wyzej, to istniejg podalgebry B; takie
ze

i A; jest uktadem pierwiastkow B;.

Dowdd: Jesli mamy rozklad A jak wyzej to zauwazmy ze V; sa wzajemnie
ortogonalne. Mianowicie, odbicie wzgledem A; € A; przekstalaca Ay € As na
Ao + ¢\1 dla pewnego c. Jednakze Ay 4 c\; jest elementem A wtedy i tylko
wtedy gdy ¢ = 0. To za$ oznacza ze A1 jest ortogonalne do M. Jako ze A; € A
byt dowolny i A; rozpina V7 to V; jest ortogonalne do A2. Rozumujac podobnie
widzimy 7e Vi jest ortogonalne do V5 i ogdlniej V; jest ortogonalne do V; dla
1% 7.

Teraz na A wprowadzamy relacje r tak ze r(«, 8) wtedy i tylko wtedy gdy
a1 3 nie sy ortogonalne. Niech r* bedzie domknieciem tranzytywnym r. r* jest
relacja réwnowaznosci. Jako A; bierzemy klasy abstrakcji r* a jako V; przestrze-
nie rozpinane przez A;. Z okreslenia widaé ze V; sg wzajemnie ortogonalne, czyli
daja rozktad V. Jak pokazaliSmy rozktadalnosé implikuje ortogonalnosé sktad-
nikow rozktadu. Ale z definicji A; nie da sie podzieli¢ na wzajemnie ortogonalne
podzbiory, wiec A; sa nierozktadalne. Co wiecej, jesli A = I'; UT'y jest rozktadem
A jak wyzeji T1NA; # 0 to A; C T'1. Przy tym elementy I'y — A; (tu jest réznica
teoriomnogosciowa) sa ortogonalne do A; i datyby rozktad I'y czyli jesli I'y jest
nierozkladalne to A; = I'y. To daje jednoznaczno$é rozktadu.

Jesli A = {h,} jest ukladem pierwiastkéw A to bierzemy

]\i = {Oé . ha S Az}7
C; = lin(Ay),
B; = Ci@@a:;\iAa.

Zauwazmy najpierw ze
A= ®;B;

jako przestrzeri wektorowa. Pozostaje pokazaé ze B; sa podalgebrami i ze wza-
jemnie komutuja.



Dla i # j ze wzgledu na ortogonalnos¢ C; do A; C; komutuje z A, dla
a € Ay, czyli C; komutuje z Bj. Dlaa € A; i € A =J; Aj mamy o+ 3 € A
implikuje 8 € A;. A wiec B; sa podalgebrami i dla i # j B; komutuje z B;. O

Uwaga: Dla celéow badania algebr Liego w charakterystyce 0 wystarczytyby
uktady pierwiastkéw w przestrzeniach wektorowych nad Q. W charakterystyce
0 badanie uktadéw zredukowanych i krystalograficznych mozna sprowadzié¢ do
badania uktadéw pierwiastkow nad Q. Jednakze, istnieja niekrystalograficzne
uktady pierwiastkéw ktére wymagaja nieco wiekszego ciala, tzn. skoriczonego
rozszerzenia algebraicznego Q. Ze wrzgledéw technicznych niektére rozumowa-
nia wygodniej jest przeprowadzi¢ w wiekszym ciele np. R. Jak sie okaze, przy
badaniu uktadéw pierwiastkéw istotny jest porzadek na pierwiastkach i dlatego
w wielu miejscach przydaje sie ciato uporzadkowane. Porzadek na pierwiastkach
daje sie wprowadzi¢ rowniez bez porzadku w ciele (réwniez w charakterystyce
skoriczonej), ale jest to technicznie znacznie trudniejsze. By unikna¢ nieporzeb-
nych probleméw technichnych w dalszym ciagu bedziemy zaktada¢ ze cialo nad
ktérym rozpatrujemy system pierwiastkéw jest podciatem ciala liczb rzeczywi-
stych.

Lemat 1.7 Niech A, V, A, e, beda jak wyzej. [eq, es] = 0 witedy i tylko wtedy
gdy a+ 5 ¢ A.

Dowdd: Oczywisci o+ ¢ A implikuje [eq, eg] = 0. Trzeba pokazaé ze a+ 0 € A
implikuje [eq, eg] # 0. Rozpatrzmy zbiér Ag , pierwiastkéw postaci 5+ ka gdzie
przebiega wszystkie wartosci catkowite takie ze f+ ka € A. Odpowiednie e, dla
v € Ag o rozpinajg przestrzen Ag . reprezentacji podalgebry generowanej przez
ha€a, fa, ktora jak wiemy jest izomorficzna z sl(2, f). Jako ze przestrzenie A,
sa jednowymiarowe i h, ma rézng warto$¢ wtasng dla réznych v, to Ag . daje
modul prosty. W szczegolnosci [eq, S + ka] = 0 tylko wtedy gdy S8 + ko jest
skajnym elementem Ag ., tzn. 5 + (k + 1)« nie jest pierwiastkiem. O

Lemat 1.8 Niech A, V, A bedg jok wyzej (na V rozpatrujemy iloczyn ska-
larny wyznaczony przez forme Killinga). A jest zredukowanym krystalograficz-
nym uktadem pierwiastkéow na V. A jest wyznaczona przez A z doktadno$cig
do izomorfizmu. Dla dowolnego zredukowanego krystalograficznego uktadu pier-
wiastkow A istnieje potprosta algebra Liego Apx r nad F' z A jako uktadem pier-
wiastkow. Ponadto istnieje potprosta algebra Liego Ap nad Q taka zZe jej po-
dalgebra Cartana diagonalizuje sie i A jest jej uktadem pierwiastkéw (innymi
stowy, w odpowiedniej bazie mozna A zdefiniowaé nad liczbami wymiernymi).

Szkic dowodu: Na mocy lematu 1.5 A jest uktadem pierwiastkéw. Podobnie
A jest zredukowanym uktadem krystalograficznym. A priori A zalezy od wyboru
podalgebry Cartana. Jednakze pokazaliSmy ze wszystkie podalgebry Cartana w
A s3 sprzezone, tzn. dla dowolnych podalgebr Cartana C7,Cy C A istnieje auto-
morfizm A przeprowadzajacy C; na Cy. Oznacza to ze uklad pierwiastkéw jest
wyznaczony przez A 7z doktadnoscia do izomorfizmu. Dzieki lematowi 1.6 rzeszte
wystarczy pokazaé¢ dla nierozkladalnych uktadéw pierwiastkow. Istnienie alge-
bry z zadanym ukladem pierwiastkéw dowodzimy dla kazdego nierozktadalnego



uktadu pierwiastkéw z osobna. Pomijam dowéd pozostatej czesci twierdzenia. O

Pokazalismy ze rozktadalne uktady pierwiastkéw odpowiadaja sumom pro-
stym algebr. Teraz chcemy wyznaczy¢ strukture nierozktadalnych uktadoéw pier-
wiastkéw, to nam da pelny opis algebr pétprostych nad cialami algebraicznie
domknietymi charakterystyki 0.

Lemat 1.9 Niech A bedzie uktadem pierwiastéw w przestrzni dwuwwymiarowesj
nad R zas eq = a/|a| dla o € A. Wtedy e, sq wierzchotkami 2n-kgta foremnego
dla pewnego n € Z.

Dowdd: e, sa wektorami jednostkowej dtugosci, kazdy z nich wyznacza punkt
na okregu jednostkowym. Ponumerujmy « tak by te punkty wypadaty po kolei,
tzn. eq, , 1 €q,,, 53 najblizszymi punktami do eq; (i leza po ré7nych stronach).
Skoro uktad pierwiastkdéw jest niezmienniczy na odbicia w kierunku swoich ele-

mentow, 0 o, (€a;_1) = —€ay,,, czyli kat miedzy en, , a eq; jest taki sam jak
kat miedzy e, a eq, ,, CO 0znacza ze e, sa wierzchotkami wielokata foremnego.
Poniewaz a € A implikuje —a € A, moc {e,} jest parzysta. O

Komoérka Weila nazywamy maksymalny zbiér S taki ze dla w € S mamy
Vaea{o,w) # 01 kazde (o, w) ma staly znak na S.

Rozpatrujemy teraz przez chwile systemy pierwiastkéw w przypadku gdy
cialo podstawewe to liczby rzeczywiste. W tym przypadku komérki Weila sa
sktadowymi spdjna zbioru {w € V : Vaea{a,w) # 0}. Mianowicie, na zbiorze
spojnym funkcja ciagla nie majaca zer ma staly znak, czyli na sktadowych wyzej
(v, w) ma staly znak, czyli komorka Weila jest suma sktadowych wyzej. Jednakze
komorki Weila sg skoficzonymi przekrojami potprzestrzeni otwartych, a wiec sa
otwarte i wypukle. A wiec sg tez spdjne, czyli jest doktadnie jedna sktadowa.

Lemat 1.10 Gdy ciatem podstawowym sq liczby rzeczywiste to grupa Weila
dziata tranzytywnie na zbiorze komorek Weila.

Dowdd: Niech M bedzie zbiorem podprzestrzeni V zadanych réwnaniami (o, w) =
0, (B,w) =0dla o,8 € A, a # . Kazdy element M jest podprzestrzenig V
kowymiaru 2. Twierdzimy 7e H =V — J,,; Z jest spojny. Mianowicie, tatwo
pokazaé ze jesli U jest otwartym spOjnym podzbiorem V to U — Z gdzie Z
jest przestrzenia kowymiaru 2 tez jest spojny. Czyli indukcyjnie H jest spojny.
H jest suma domknie¢ komoérek Weila. Niech niech S bedzie domknieciem w
H ustalonej komérki Weila za§ T = WS orbita S wzgledem grupy Weila W.
Wtedy T jest podzbiorem domknietym H. Niech R bedzie sumg domknie¢ w
H komorek Weila nie nalezacych do orbity S. f.acznie R i T zawieraja wszst-
kie komoérki Weila, wiec ich suma jest gesta w H. R i T jako skoriczona suma
zbioréw domknietych sa domkniete, wiec H = RUT. Przestrzen spéjna nie da
sie przedstawi¢ jako sume roztacznych zbioréw domknietych, wiec albo R jest
pusty (co chemy pokazaé), albo istnieje € R NT. Wnetrza komoérek Weila sa
rozlaczne, wiec x lezy na brzegu komorki, czyli istnieje a takie ze (o, x) = 0.
Z okreglenia M i H takie « jest jednoznacznie wyznaczone. A wiec istnieje do-
mknieta komorka P z T lezaca po jednej stronie hiperplaszczyzny (a,w) = 01
domknieta komoérka @ z R lezaca po drugiej stronie tej hiperptaszczyzny, majace



wspOlny punkt x. Wtedy 0, (P) = Q. Ale o, jest elementem grupy Weila, wiec
rowno$¢ wyzej przeczy temu ze @ nie jest w orbicie S wzgledem W. Otrzymana
sprzeczno$¢ pokazuje ze R jest puste i T = H, czyli W dziala tranzytywnie. [

Lemat 1.11 Gdy ciato podstawowe jest pociatem R to grupa Weila dziata tran-
2ytywnie na zbiorze komdorek Weila.

Dowdd: Nasze cialo K jest zanurzone w liczbach rzeczywstych R. Odpowienio
V mozna zanurzy¢ w przestrzeni wektorowej Vg nad R. Mozemy tez rozszerzy¢
dziatanie W do Vg. Komoérka Weila w V' jednoznacznie wyznacza komdrke We-
ila w Vg. Do dziatania W na Vi stosuje sie poprzedni lemat. Ale skoro komorki
rozszerzaja sie jednoznacznie to wynik pozostaje prawdziwy dla komoérek w V.
O

Niech w € V bedzie wektorem takim 7ze (a,w) # 0 dla o € A, Ay = {a €
At (a,w) > 0}. Ay nazywamy zbiorem pierwiastkow dodatnich. Ay zalezy od
wyboru w, doktadnie od wyboru komoérki Weila do ktérej nalezy w. Jednakze Le-
mat 1.11 pokazuje ze rézne wybory daja rownowazng teorie, tzn. mozna przejsé
miedzy réznymi wyborami przy pomocy elementu grupy Weila.

Lemat 1.12 Niech A C Ay bedzie zbiorem tych elementdw Ay ktore dajg
wszystkie kierunki ekstremalne stozka wypuktego generowanego przez A. Wtedy
dla o, € A, a # 8 mamy (a,8) < 0. Co wiecej kgt pomiedzy o a B to
(n—1)7/n dla pewnego n € Z. Ponadto A jest bazg V.

Dowdéd: Wiadomo ze dowolny element wlasciwego domknietego stozka wy-
puktago jest kombinacjg liniowa o wspdtczynnikach dodatnich elementéw za-
dajacych kierunki ekstremalne. Czyli kazdy element Ay jest kombinacja linowsa
elementéw z A. Poniewaz A = Ay U —A, to réwniez kazdy element z A jest
kombinacjg linowg elementéw z A. Lecz A rozpina V' czyli A rozpina V. Jesli
V jest jednowymiarowe to A sklada sie z jednego elementu i teza jest oczy-
wista. W przeciwnym razie dla o,8 € A « # [ rozpatrzmy podprzestrzen
Va,p = lin{a, 8} C V. Niech Q@ = ANV, p za§ Oy = Ay NV, 5. Q jest syste-
mem pierwiastkéw w przestrzeni dwuwymiarowej zas 2 odpowiednim uktadem
pierwiastkéw dodatnich. Z lematu wiemy ze po unormowaniu elementy 2 sa
wierzchotkami 2n-kata foremnego. n > 2, przy tym dla n = 2 mamy czworokat
i wida¢ ze « i 8 sa ortogonalne. Dla n > 2 mamy || = n, czyli pomiedzy « a
B musi by¢ n — 1 innych pierwiaskow, czyli kat pomiedzy o a 5 to (n — 1)m/n.
Dla n > 2 to implikuje ze (a, §) < 0.

Aby pokaza¢ ze A jest liniowo niezalezne rozwazmy kombinacje liniows
Y aen Gac. Niech Dy = {a € A:aq >0}, D_ = {a € A:a, < 0} i niech
W =3 ,ep, Ga®; V=) cp ao. Poniewaz dla o € Ay mamy (w,a) > 0
to (w,w) = ZaeD+ ao(w,a) > 0 czyli w # 0 o ile Dy # (). Podobnie v # 0
oile D_ # (). Jegli nie wszystkie wspolczynniki rozwazanej kombinacji liniowej
znikaja to co najmniej jeden z Dy lub D_ jest niepusty. Jesli dokladnie jeden
jest niepusty to poprzednie uwagi pokazuja ze ta kombinacja jest niezerowa.
Jesli oba sa niepuste to (w + v, w + v) = (w,w) + 2(w,v) + (v,v). Nastepnie



(w,v) = ZaeD+,BeD, aqag(a,B8) > 0 bo ay > 0, ag < 0, (o, 8) < 0, czyli
(w+v,w~+v) > (w,w) + (v,v) >0, czyli w+ v # 0 co pokazuje liniowa nieza-
leznosc. -

Diagramem Coxetera-Dynkina (lub krotko diagramem Dynkina) zwiazanym
z A nazywany graf ktorego wierchotkami sg elementy A za$§ krawedzie sa po-
miedzy takimi o, 8 € A 7e (o, 8) < 0. Przy tym krawedzi przypisujemy wage n
jesli kat pomiedzy « a § to (n — 1)w/n.

Ogolniej, mozemy rozpatrywaé¢ uktady wektorow A takie ze dla o, 8 € A,
a # B kat pomiedzy « a 8 to (n — 1)7/n dla pewnego n € Z, n > 2.

W diagramie Dynkina zredukowanego uktadu pierwiastkéw moga sie pojawié
pierwiastki réznej dlugosci, wtedy krawedz rysujemy jako strzatke skierowana
w kierunku krotszego wektora.

Lemat 1.13 Diagram Dynkina nierozktadalnego zredukowanego krystalograficz-
nego uktadu pierwiastkow nalezy do jednej z wymienionych nizej rodzin:

o A, :n wierzchotkéw potgczonych w taricuch krawedziami wagi 3,

e B, : n wierzchotkéw z n > 2 potgczonych w taricuch gdzie wagi krawedzi
sq 3 za wyjgtkiem ostatniego polgczenia ktdore ma wage 4 za$ strzatka jest
w kierunku ostatniego wierzchotka,

e Cp: n wierzchotkéw z n > 3 polgczonych w tanicuch gdzie wagi krawedzi
sq 3 za wyjgtkiem ostatniego polgczenia ktdore ma wage 4 za$ strzatka jest
w kierunku przedostatnieqo wierzchotka,

e D, :n wierzchotkéw zn > 4 gdzie n—1 wierzchotki sq polgczone w taricuch,
za$ przedostatni wierzchotek tanicucha jest potgczony z ostatnim wierzchot-
kiem (ktdéry nie ma innych polgczen), przy tym wagi potgczeri to 3,

o Fg, E7, Es. n wierzchotkow zn = 6,7,8 gdzie n — 1 wierzchotki sq potg-
czone w tanicuch, za$ drugi od korica wierzchotek taricucha jest potgczony
z ostatnim wierzchotkiem (ktory nie ma innych potgczen), przy tym wagi
potgczen to 3,

o Fy: cztery wierzchotki potgczone w taricuch, gdzie wagi skrajnych potgczen
to 3 za$ waga Srodkowego polgczenia to 4, przy tym Srodkowe potgczenie
jest skierowane (ale wybdr kierunku daje izomorficzne diagramy),

o Go: dwa wierzchotki potgczone krawedzig wagi 6 (ktora jest skierowana).

Ponadto istnieje niekrystalograficzny uktad pierwiastkéw w przestrzeni wymiaru
3 i w przestrzeni wymiaru 4 (w obu przypadkach diagam to tarncuch ze skrajng
krawedzig wagi 5 a pozostatymi wagi 3) i rodzina niekrystalograficznych uktadéw
na ptaszczyinie.

Uwaga: W zadaniach badaliémy uktad pierwiastkow sl(n+1, F). Z tego tatwo
wynika ze odpowiedni diagram Dynkina to A,. Podobnie, diagram Dynkina
algebry so(2n + 1, F) to B, za$ diagram Dynkina algebry so(2n,F) to D,
Wreszcie diagram Dynkina algebry sp(2n, F) to C,,.
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Lemat 1.14 Diagram Dynkina nie zowiera cykli.

Dowod. Jesli «o; dla @ = 1,...,k stanowia cykl, to biorac e; = «;/|a;] i
v = Zi;l e; mam (v,v) = Zle(ei, e;) +23,,;(ei,e;j). Dlai # j polaczonych
krawedzia kat miedzy e; a e; to co najmniej 27/3, czyli (e;,e;) < —1/2. W cyklu
mamy k par i, j potaczonych krawedziami, co oznacza ze (v,v) < 0, co datoby
sprzeczno$¢ 7z liniowa niezaleznoscia «;. (]

Dla a € A niech e, = /|a|. Dla o, 8 € A niech qo,8 = (€n,€3)
Lemat 1.15 Niech S € A, a ¢ S. Wtedy > 5. qiﬁ <1

Dowdd: Bez zmniejszania ogélnodci mozemy zaktadacé 7e go, g # 0 dla g € S.
Z poprzedniego lematu (braku cykli) wynika teraz ze ¢, g, = 0 dla 81, 82 € S,
czyli {eg € S} jest baza ortonormalna pewnej podprzestrzeni W C V. e ¢ W,
czyli rzut e, na W ma dlugo$¢ mniejsza niz 1. Lecz kwadrat tej dtugosci wynosi

Y pes(eaes)? =3 pes s -

Lemat 1.16 Spdjny diagram Dynkina z krowedzig wagi > 6 ma dwa wierz-
chotki.

Dowdéd. Niech a i 8 beda wierzchotkami polaczonymi krawedzia wagi > 6.
Gdyby bylto wiecej wierzchotkéw to istniataby wierzcholek v potgczony albo z «
albo z . Bez utraty ogélnosci mozna zaktadaé ze v jest potaczony z . Waga 6
oznacza 7e q3 5 > 3/4, q3 ., > 1/4 co datoby sprzecznosé z poprzednim lematem.

Lemat 1.17 Wierzchotek diagramu Dynkina jest potgczony z co najwyzej trzema
innymi wierzchotkami. Jesli jest potqczony z trzema wierzchotkami to wagi kra-
wedzi to 3. Zaden wierzchotek nie nalezy do dwu krawedzi wagi > 4.

Dow6d. To wynika bezposrednio z lematy o sumie qi”@: qiﬁ > 1/4, a jesli
waga jest wigksza niz 3 to g 5 > 1/2 O

Lemat 1.18 Diagram Dynkina zawiera co najwyzej jeden punkt rozgatezienia i
co najwyzej jedng krowed? wagi > 4. Jesli jest punkt rozgatezienia to wszystkie
wagi to 3.

Lematy powyzej i kilka nastepnych lematéw tego typu w sumie daje dowod
podanego wyzej twierdzenia o klasyfikacji uktadéw pierwiastkdw.

11



