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1 Struktura algebr półprostych
Przypominam lemat z poprzednich notatek:

Lemat 1.1 Niech A będzie skończenie wymiarową półprostą algebrą Liego nad
ciałem charakterystyki 0 i niech Der(A) będzie algebrą Liego różniczkowań A.
Wtedy odwzorowanie x 7→ adx zadaje izomorfizm A z Der(A)

Lemat 1.2 Niech A będzie skończenie wymiarową półprostą algebrą Liego nad
ciałem algebraicznie domkniętym charakterystyki 0 i niech C będzie podalgebrą
Cartana w A. C jest przemienna i dla x ∈ C operator adx jest półprosty.

Dowód: Dla x, y ∈ C mamy

K(x, y) =
∑

α(x)α(y) dim(Aα)

Jeśli y ∈ [C,C] to wtedy α(y) = 0 dla dowolnego α takiego że Aα 6= {0}.
A więc wtedy K(x, y) = 0, czyli y = 0 bo forma Killinga obcięta do C jest
niezdegenerowana. Konsekwentnie [C,C] = {0} i C jest przemienna.

Dla x ∈ C niech adx = S + N będzie rozkładem adx na część półprostą i
nilpotentną. S jest różniczkowaniem A: dla y ∈ Aα, z ∈ Aβ mamy [y, z] ∈ Aα+β ,
S(y) = α(x)y, S(z) = β(x)z a więc

S([y, z]) = (α + β)(x)[y, z] = [α(x)y, z] + [y, β(x)z] = [S(y), z] + [y, S(z)].

Na mocy 1.1 istnieją s, n ∈ A takie że ads = S i adn = N . S komutuje z każdym
operatorem komutującym z adx, a więc w szczególności S komutuje z ady dla
dowolnego y ∈ C. A więc jeszcze raz używając 1.1 widzimy że s komutuje z
C, czyli s należy do normalizatora C, czyli s ∈ C. Skoro x = s + n to również
n ∈ C. Jednakże adn jest nilpotentny, czyli α(n) = 0 dla α takich że Aα 6= {0},
czyli jak poprzednio n = 0, co oznacza że adx = S jest półprosty. �

Niech Λ = {α 6= 0 : Aα 6= {0}}. Przy założeniach jak wyżej forma Killinga
jest niezdegenerowana na C, a więc dla α ∈ Λ istnieje dokładnie jeden hα ∈ C
takie że α(x) = K(hα, x) dla dowolnego x ∈ C.

Lemat 1.3 • Jeśli e ∈ Aα, f ∈ A−α to [e, f ] = K(e, f)hα.

• α(hα) 6= 0
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• {hα : α ∈ Λ} rozpina C

• Jeśli e ∈ Aα, f ∈ A−α, K(e, f) 6= 0 to podalgebra A generowana przez e,
f i hα jest izomorficzna z sl(2, F )

• Przestrzenie Aα są jednowymiarowe

• Jeśli α, tα ∈ Λ to t ∈ {−1, 1}

• Jeśli α, β ∈ Λ to 2K(hα, hβ)/K(hα, hα) jest liczbą całkowitą

Dowód: Niech e ∈ Aα, f ∈ A−α. Dla x ∈ C mamy

K([e, f ], x) = −K(f, [e, x]) = α(x)K(f, e) = K(f, e)K(hα, x)

czyliK([e, f ]−K(e, f)hα, x) = 0 co na mocy niezdegenerowaniaK na C oznacza
że [e, f ] = K(e, f)hα. A więc pokazaliśmy pierwszy punkt.

Na mocy lematu Weyla dla dowolnego β ∈ Λ mamy β(hα) = cα,βα(hα),
czyli α(hα) = 0 implikowałoby β(hα) = 0, czyli (jak w dowodzie 1.2) hα byłoby
ortogonelne do C względem formy Killinga i hα = 0. Lecz α 6= 0, więc hα 6= 0
co oznacza że α(hα) 6= 0.

A jest półprosta, więc A = [A,A] = lin[Aα, Aβ ] Dla α 6= −β dostajemy
składniki rozkładu różne od C, a więc C = linα6=0[Aα, A−α]. Na mocy poprzed-
nigo punktu [Aα, A−α] jest rozpinane przez hα, czyli C = lin{hα : α ∈ Λ}.

Aby pokazać czwarty punkt niech g = 2f/(α(hα)K(e, f)). Wtedy K(e, g) =
K(e, f)/(α(hα)K(e, f)) = 2/α(hα), h = [e, g] = K(e, g)hα = 2hα/α(hα) i
α(h) = 2α(hα)/α(hα) = 2. A więc [h, e] = α(h)e = 2e i [h, g] = −α(h)g = −2g
co oznacza że h, e, g spełniają te same relacje komutacji co

H =

[

1 0
0 −1

]

, X =

[

0 1
0 0

]

, Y =

[

0 0
1 0

]

czyli h 7→ H , e 7→ X , g 7→ Y zadaje izomorfizm.
Przypuśćmy teraz że Aα ma wymiar większy niż 1. Wtedy istniałby z ∈

Aα taki że z 6= 0, lecz K(z, g) = 0. A więc [g, z] = K(z, g)hα = 0, czyli
z generowały skończenie wymiarowy moduł M nad sl(2, F ) taki że wszystkie
wartości własne h byłyby dodanie. Dokładniej niech z0 = 0 i zk+1 = [e, zk].
Zauważmy że istnieją stałe ck takie że [g, zk] = ckzk−1 dla k ≥ 0 (gdzie c0 = 0 i
z−1 = 0). Mianowicie indukcyjnie [g, zk+1] = [g, [e, zk]] = [[g, e], zk]+[e, [g, zk]] =
−[h, zk] + [e, ckzk−1] = −2kzk + ckzk czyli M = lin{adke(z) : k ∈ Z, k ≥ 0} bo
ta podprzestrzeń jest niezmiennicza na działanie h, e, g. Ale taki moduł M nie
istnieje co oznacza że przestrzeń Aα jest jednowymiarowa.

Podobnie, jeśli Atα jest nietrywialne to hmusi mieć całkowitą wartość własną
na Atα, czyli 2t ∈ Z. Ale rola α i tα jest symetryczna, czyli również 2/t ∈ Z.
Gdyby t = 2 to A2α = ade(Aα) lecz jest to niemożliwe bo Aα jest rozpinane
przez e i ade(Aα) = {0}. Przez symetrię wykluczone jest również t = −2,
t = 1/2, i t = −1/2. A więc jedne możliwości które pozostają to t = −1 lub
t = 1.

Aby pokazać ostatni punkt rozważmy podalgebrę A generowaną przez hα, e,
f . Jak wiemy ta algebra jest izomorficzna z sl(2, F ). Niech H = 2hα/K(hα, hα).
Z opisu skończenie wymiarowych modułów nad sl(2, F ) wiemy że w dowolnym
takim module H ma całkowite wartości własne. Rozważmy działanie H na x ∈
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Aβ : [H,x] = 2β(hα)/K(hα, hα) = 2K(hβ, hα)/K(hα, hα), czyli 2K(hβ, hα)/K(hα, hα)
jako wartość własna H jest liczbą całkowitą. �

Przykład: Niech g = sl(3,C). Wiadomo że macierze diagonalne o śladzie 0
dają podalgebrą Cartana C w g. Niech

a =





λ1 0 0
0 λ2 0
0 0 λ3





i niech ei,k dla i, k ∈ {1, 2, 3}, i 6= k będzie macierzą taką że na przecięciu
wiersza i i kolumny k jest 1 a pozostałe elementny są zerami. Łatwo sprawdzić
że [a, ei,k] = (λi − λk)ei,k. A więc funkcjonały pierwastkowe to αi,k = λi − λk
zaś odpowiednia przestrzeń Vαi,k

jest jednowymiarowa i rozpinana przez ei,k.
Jest sześć macierzy ei,k z i 6= k, razem z macierzami z C daje to rozkład g na
sumę prostą. Jako że g składa się na macierzy o śladzie 0 to dla a z C zachodzi
λ1 + λ2 + λ3 = 0. A więc

K(a, a) = 2
(

(λ1 − λ2)
2 + (λ1 − λ3)

2 + (λ2 − λ3)
2
)

=

2
(

(λ1 − λ2)
2 + (λ1 − λ3)

2 + (λ2 − λ3)
2
)

+ 2(λ1 + λ2 + λ3)
2 =

6(λ21 + λ22 + λ23)

czyli forma Killinga na C to 6 razy obcięcie do C euklidesowego produktu ska-
larnego. W szczególności hα to 1

6 α. Jawnie, gdy α1,2 jest reprezentowany jako
wektor w C3 mamy

α1,2 = (1,−1, 0),

czyli

hα1,2
=

1

6
(1,−1, 0).

Podobnie

hα1,3
=

1

6
(1, 0,−1),

hα2,3
=

1

6
(0, 1,−1)

i hα2,1
= −hα1,2

, hα3,1
= −hα1,3

, hα3,2
= −hα2,3

. Widać że K(hα, hα) = 1
3 .

Podobnie K(hα1,2
, hα1,3

= 1
6 i K(hα1,2

, hα2,3
) = − 1

6 . Wynika stąd że kąt między
hα1,2

a hα1,3
jest równy π/3, zaś kąt między hα1,2

i hα2,3
jest równy 2π/3. A więc

odpowiednio uporządkowane α są wierzchołkami sześciokąta równobocznego.
Można to zilustrować następującym obrazkiem:
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h_12

h_13h_23

Lemat 1.4 α(hα) ∈ Q i α(hα) > 0. Niech V = linQ{hα : α ∈ Λ}. Forma
Killinga obcięta do V przyjmuje wartości wymierne i jest dodatnio określona.
Ponadto, jeśli S ⊂ Λ i ∆ = {hα : α ∈ S} jest bazą C nad F , to ∆ jest bazą V .

Dowód: α(hα) = K(hα, hα) =
∑

β∈Λ β(hα)
2 =

∑

β∈Λ(rα,βα(hα))
2 czyli

α(hα) =
1

∑

β∈Λ r
2
α,β

,

więc α(hα) ∈ Q i α(hα) > 0.
Jeśli h =

∑

qαhα, to β(h) =
∑

α,β∈Λ qαrα,βα(hα) czyli β(h) ∈ Q. Jeśli
h1, h2 ∈ V to K(h1, h2) =

∑

β∈Λ β(h1)β(h2) ∈ Q i K(h, h) =
∑

β∈Λ β(h)
2 ≥ 0.

Jeśli K(h, h) = 0 to dla każdego β ∈ Λ mamy β(h) = 0 i h jest ortogonalne
względem formy Killinga do C, czyli h = 0.

Niech ∆ jak wyżej będzie bazą C nad F , Ṽ = linQ(∆) i niech β ∈ Λ. Dla
hα ∈ ∆ mamy β(hα) = K(hβ , hα) ∈ Q czyli β ∈ Ṽ ∗, czyli istnieje h̃ ∈ Ṽ

taki że β(h) = K(h̃, h) dla h ∈ Ṽ . Jednakże ∆ ⊂ Ṽ jest bazą C nad F , więc
β(h) = K(h̃, h) dla h ∈ C, czyli h̃ = hβ , a więc hβ ∈ Ṽ . �
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Niech V będzie skończenie wymiarową przestrzenią nad ciałem F charakte-
rystyki 0. Zakładamy że na V jest zadany iloczyn skalarny. Dla wektora v ∈ V
odbicie σv w kierunku v definiujemy wzorem

σv(x) = x− 2
〈v, x〉v

〈v, v〉

gdzie zakładamy że 〈v, v〉 6= 0. Dla F = R jest to klasyczna definicja, ale te
same własności dostaniemy dla innych ciał.

Lemat 1.5 Istnieje automorfizm φ : A 7→ A taki że φ(C) = C, φ(hα) = −hα
i φ(h) = h dla h ∈ C takich że α(h) = 0. Innymi słowy, φ|C jest odbiciem w
kierunku hα.

Dowód: Wybieramy e ∈ Aα, f ∈ A−α, tak by α([e, f ]) = 2. Wtedy podalge-
bra A generowana nad Q przez [e, f ], e, f jest izomorficzna z sl(2,Q). Niech

H =

[

1 0
0 −1

]

, X =

[

0 1
0 0

]

, Y =

[

0 0
1 0

]

Przy izomorfiźmie [e, f ] przechodzi na H , e przechodzi na X , f przechodzi
na Y . Zauważmy że ade i adf są nilpotentnymi automorfizmami A, dlatego
ψ1 = exp(ade) =

∑

adke/k! i ψ2 = exp(−adf ) =
∑

(−adf )
k/k! są dobrze zde-

finowanymi automorfizmami A. Pokażemy że φ = ψ1ψ2ψ1 jest pożądanym au-
tomorfizmem. Mianowicie, jeśli h ∈ C i α(h) = 0 to [h, e] = [h, f ] = 0, czyli
ade(h) = adf (h) = 0 i konsekwentnie ψ1(h) = ψ2(h) = 0, wiec φ(h) = h.
Pozostaje pokazać że φ([e, f ]) = −[e, f ]. Dzięki izomorfizmowi algebry genero-
wanej przez [e, f ], e, f z sl(2,Q) jest to ćwiczenie na mnożenie macierzy 2 na
2. Dokładniej, wystarczy wykonać obliczenia używając adX i adY zamiast ade
i adf . Dla Z ∈ sl(2,Q) mamy adX(Z) = XZ − ZX = LX(Z) − RX(Z) gdzie
LX jest operatorem mnożenia z lewej strony, zaś RX operatorem mnożenia z
prawej strony. Ponieważ mnożenie z lewej komutuje z mnożeniem z prawej many
exp(adX) = Lexp(X)Rexp(−X) i konsekwentnie φ([e, f ]) przechodzi przy izomor-
fiźmie na Lexp(X) exp(−Y ) exp(X)Rexp(−X) exp(Y ) exp(−X)H . Teraz

exp(X) =

[

1 1
0 1

]

exp(−Y ) =

[

1 0
−1 1

]

exp(X) exp(−Y ) exp(X) =

[

0 1
−1 0

]

Lexp(X) exp(−Y ) exp(X)Rexp(−X) exp(Y ) exp(−X)H =

[

−1 0
0 1

]

= −H.

�

Definicja: Niech V będzie jak w definicji odbicia. Mówimy że skończony
podzbiór Λ ⊂ V jest systemem pierwiastków jeśli 0 /∈ Λ, Λ rozpina V i dla
każdego v ∈ Λ mamy σv(Λ) ⊂ Λ. Mówimy że Λ jest krystalograficzny jeśli
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2〈α, β〉/〈β, β〉 ∈ Z dla dowolnych α, β ∈ Λ. Mówimy że Λ jest zredukowany jeśli
dla α, tα ∈ Λ implikuje że t ∈ {−1, 1}.

Definicja: Niech Λ ⊂ V będzie systemem pierwiastków. Grupę generowaną
przez operatory σv gdzie v ∈ Λ nazywamy grupą Weila systemu Λ.

Definicja Powiemy że układ pierwiastków Λ na V jest rozkładalny, jeśli
V = V1 ⊕ V2 i Λ = Λ1 ∪ Λ2 gdzie Λi = Λ ∩ Vi dla i = 1, 2. Powiemy że układ
pierwiastków jest nierozkładalny jeśli nie jest rozkładalny.

Lemat 1.6 Jeśli Λ jest układem pierwiastków na V to istnieją podprzestrzenie
Vi i układy pierwiastków Λi na Vi takie że

V = ⊕iVi,

Λ =
⋃

i

Λi

i Λi jest nierozkładalny. Taki rozkład jest jednoznaczny. Ponadto, jesli Λ jest
układem pierwiastków algebry Liego A jak wyżej, to istnieją podalgebry Bi takie
że

A = ⊕iBi

i Λi jest układem pierwiastków Bi.

Dowód: Jeśli mamy rozkład Λ jak wyżej to zauważmy że Vi są wzajemnie
ortogonalne. Mianowicie, odbicie względem λ1 ∈ Λ1 przekstałaca λ2 ∈ Λ2 na
λ2 + cλ1 dla pewnego c. Jednakże λ2 + cλ1 jest elementem Λ wtedy i tylko
wtedy gdy c = 0. To zaś oznacza że λ1 jest ortogonalne do λ2. Jako że λ1 ∈ Λ1

był dowolny i Λ1 rozpina V1 to V1 jest ortogonalne do λ2. Rozumując podobnie
widzimy że V1 jest ortogonalne do V2 i ogólniej Vi jest ortogonalne do Vj dla
i 6= j.

Teraz na Λ wprowadzamy relację r tak że r(α, β) wtedy i tylko wtedy gdy
α i β nie są ortogonalne. Niech r∗ będzie domknięciem tranzytywnym r. r∗ jest
relacją równowazności. Jako Λi bierzemy klasy abstrakcji r∗ a jako Vi przestrze-
nie rozpinane przez Λi. Z określenia widać że Vi są wzajemnie ortogonalne, czyli
dają rozkład V . Jak pokazaliśmy rozkładalność implikuje ortogonalność skład-
ników rozkładu. Ale z definicji Λi nie da się podzielić na wzajemnie ortogonalne
podzbiory, więc Λi są nierozkładalne. Co więcej, jeśli Λ = Γ1∪Γ2 jest rozkładem
Λ jak wyżej i Γ1∩Λi 6= ∅ to Λi ⊂ Γ1. Przy tym elementy Γ1−Λi (tu jest różnica
teoriomnogościowa) są ortogonalne do Λi i dałyby rozkład Γ1 czyli jeśli Γ1 jest
nierozkładalne to Λi = Γ1. To daje jednoznaczność rozkładu.

Jeśli Λ = {hα} jest układem pierwiastków A to bierzemy

Λ̃i = {α : hα ∈ Λi},

Ci = lin(Λi),

Bi = Ci ⊕⊕α:Λ̃i
Aα.

Zauważmy najpierw że
A = ⊕iBi

jako przestrzeń wektorowa. Pozostaje pokazać że Bi są podalgebrami i że wza-
jemnie komutują.
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Dla i 6= j ze względu na ortogonalność Ci do Λj Ci komutuje z Aα dla
α ∈ Λ̃i, czyli Ci komutuje z Bj . Dla α ∈ Λ̃i i β ∈ Λ̃ =

⋃

j Λ̃j mamy α+ β ∈ Λ̃

implikuje β ∈ Λ̃i. A więc Bi są podalgebrami i dla i 6= j Bi komutuje z Bj. �

Uwaga: Dla celów badania algebr Liego w charakterystyce 0 wystarczyłyby
układy pierwiastków w przestrzeniach wektorowych nad Q. W charakterystyce
0 badanie układów zredukowanych i krystalograficznych można sprowadzić do
badania układów pierwiastków nad Q. Jednakże, istnieją niekrystalograficzne
układy pierwiastków które wymagają nieco większego ciała, tzn. skończonego
rozszerzenia algebraicznego Q. Ze względów technicznych niektóre rozumowa-
nia wygodniej jest przeprowadzić w większym ciele np. R. Jak się okaże, przy
badaniu układów pierwiastków istotny jest porządek na pierwiastkach i dlatego
w wielu miejscach przydaje się ciało uporządkowane. Porządek na pierwiastkach
daje się wprowadzić również bez porządku w ciele (również w charakterystyce
skończonej), ale jest to technicznie znacznie trudniejsze. By uniknąć nieporzeb-
nych problemów technichnych w dalszym ciągu będziemy zakładać że ciało nad
którym rozpatrujemy system pierwiastków jest podciałem ciała liczb rzeczywi-
stych.

Lemat 1.7 Niech A, V , Λ, eα będą jak wyżej. [eα, eβ] = 0 wtedy i tylko wtedy
gdy α+ β /∈ Λ.

Dowód: Oczywiści α+β /∈ Λ implikuje [eα, eβ ] = 0. Trzeba pokazać że α+β ∈ Λ
implikuje [eα, eβ] 6= 0. Rozpatrzmy zbiór Λβ,α pierwiastków postaci β+kα gdzie
przebiega wszystkie wartości całkowite takie że β+kα ∈ Λ. Odpowiednie eγ dla
γ ∈ Λβ,α rozpinają przestrzeń Aβ,α reprezentacji podalgebry generowanej przez
hαeα, fα, która jak wiemy jest izomorficzna z sl(2, f). Jako że przestrzenie Aγ

są jednowymiarowe i hα ma różną wartość własną dla różnych γ, to Aβ,α daje
moduł prosty. W szczególności [eα, β + kα] = 0 tylko wtedy gdy β + kα jest
skajnym elementem Λβ,α, tzn. β + (k + 1)α nie jest pierwiastkiem. �

Lemat 1.8 Niech A, V , Λ będą jak wyżej (na V rozpatrujemy iloczyn ska-
larny wyznaczony przez formę Killinga). Λ jest zredukowanym krystalograficz-
nym układem pierwiastków na V . A jest wyznaczona przez Λ z dokładnością
do izomorfizmu. Dla dowolnego zredukowanego krystalograficznego układu pier-
wiastków Λ istnieje półprosta algebra Liego AΛ,F nad F z Λ jako układem pier-
wiastków. Ponadto istnieje półprosta algebra Liego AΛ nad Q taka że jej po-
dalgebra Cartana diagonalizuje się i Λ jest jej układem pierwiastków (innymi
słowy, w odpowiedniej bazie można A zdefiniować nad liczbami wymiernymi).

Szkic dowodu: Na mocy lematu 1.5 Λ jest układem pierwiastków. Podobnie
Λ jest zredukowanym układem krystalograficznym. A priori Λ zależy od wyboru
podalgebry Cartana. Jednakże pokazaliśmy że wszystkie podalgebry Cartana w
A są sprzężone, tzn. dla dowolnych podalgebr Cartana C1, C2 ⊂ A istnieje auto-
morfizm A przeprowadzający C1 na C2. Oznacza to że układ pierwiastków jest
wyznaczony przez A z dokładnością do izomorfizmu. Dzięki lematowi 1.6 rzesztę
wystarczy pokazać dla nierozkładalnych układów pierwiastków. Istnienie alge-
bry z zadanym układem pierwiastków dowodzimy dla każdego nierozkładalnego
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układu pierwiastków z osobna. Pomijam dowód pozostałej części twierdzenia. �

Pokazaliśmy że rozkładalne układy pierwiastków odpowiadają sumom pro-
stym algebr. Teraz chcemy wyznaczyć strukturę nierozkładalnych układów pier-
wiastków, to nam da pełny opis algebr półprostych nad ciałami algebraicznie
domkniętymi charakterystyki 0.

Lemat 1.9 Niech Λ będzie układem pierwiastów w przestrzni dwuwymiarowej
nad R zaś eα = α/|α| dla α ∈ Λ. Wtedy eα są wierzchołkami 2n-kąta foremnego
dla pewnego n ∈ Z.

Dowód: eα są wektorami jednostkowej długości, każdy z nich wyznacza punkt
na okręgu jednostkowym. Ponumerujmy α tak by te punkty wypadały po kolei,
tzn. eαj−1

i eαj+1
są najbliższymi punktami do eαj

(i leżą po różnych stronach).
Skoro układ pierwiastków jest niezmienniczy na odbicia w kierunku swoich ele-
mentów, to σeαj

(eαj−1
) = −eαj+1

, czyli kąt między eαj−1
a eαj

jest taki sam jak
kąt między eαj

a eαj+1
, co oznacza że eα są wierzchołkami wielokąta foremnego.

Ponieważ α ∈ Λ implikuje −α ∈ Λ, moc {eα} jest parzysta. �

Komórką Weila nazywamy maksymalny zbiór S taki że dla ω ∈ S mamy
∀α∈Λ〈α, ω〉 6= 0 i każde 〈α, ω〉 ma stały znak na S.

Rozpatrujemy teraz przez chwilę systemy pierwiastków w przypadku gdy
ciało podstawewe to liczby rzeczywiste. W tym przypadku komórki Weila są
składowymi spójną zbioru {ω ∈ V : ∀α∈Λ〈α, ω〉 6= 0}. Mianowicie, na zbiorze
spójnym funkcja ciągła nie mająca zer ma stały znak, czyli na składowych wyżej
〈α, ω〉ma stały znak, czyli komórkaWeila jest sumą składowych wyżej. Jednakże
komórki Weila są skończonymi przekrojami półprzestrzeni otwartych, a więc są
otwarte i wypukłe. A więc są też spójne, czyli jest dokładnie jedna składowa.

Lemat 1.10 Gdy ciałem podstawowym są liczby rzeczywiste to grupa Weila
działa tranzytywnie na zbiorze komórek Weila.

Dowód: NiechM będzie zbiorem podprzestrzeni V zadanych równaniami 〈α, ω〉 =
0, 〈β, ω〉 = 0 dla α, β ∈ Λ, α 6= β. Każdy element M jest podprzestrzenią V
kowymiaru 2. Twierdzimy że H = V −

⋃

Z∈M Z jest spójny. Mianowicie, łatwo
pokazać że jeśli U jest otwartym spójnym podzbiorem V to U − Z gdzie Z
jest przestrzenią kowymiaru 2 też jest spójny. Czyli indukcyjnie H jest spójny.
H jest sumą domknięć komórek Weila. Niech niech S będzie domknięciem w
H ustalonej komórki Weila zaś T = WS orbitą S względem grupy Weila W .
Wtedy T jest podzbiorem domkniętym H . Niech R będzie sumą domknięć w
H komórek Weila nie należących do orbity S. Łącznie R i T zawierają wszst-
kie komórki Weila, więc ich suma jest gesta w H . R i T jako skończona suma
zbiorów domkniętych są domknięte, więc H = R ∪ T . Przestrzeń spójną nie da
się przedstawić jako sumę rozłącznych zbiorów domkniętych, więc albo R jest
pusty (co chemy pokazać), albo istnieje x ∈ R ∩ T . Wnętrza komórek Weila są
rozłączne, więc x leży na brzegu komórki, czyli istnieje α takie że 〈α, x〉 = 0.
Z określenia M i H takie α jest jednoznacznie wyznaczone. A więc istnieje do-
mknięta komórka P z T leżąca po jednej stronie hiperpłaszczyzny 〈α, ω〉 = 0 i
domknięta komórkaQ z R leżąca po drugiej stronie tej hiperpłaszczyzny, mające
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wspólny punkt x. Wtedy σα(P ) = Q. Ale σα jest elementem grupy Weila, więc
równość wyżej przeczy temu że Q nie jest w orbicie S względem W . Otrzymana
sprzeczność pokazuje że R jest puste i T = H , czyli W działa tranzytywnie. �

Lemat 1.11 Gdy ciało podstawowe jest pociałem R to grupa Weila działa tran-
zytywnie na zbiorze komórek Weila.

Dowód: Nasze ciało K jest zanurzone w liczbach rzeczywstych R. Odpowienio
V można zanurzyć w przestrzeni wektorowej VR nad R. Możemy też rozszerzyć
działanie W do VR. Komórka Weila w V jednoznacznie wyznacza komórkę We-
ila w VR. Do działania W na VR stosuje się poprzedni lemat. Ale skoro komórki
rozszerzają się jednoznacznie to wynik pozostaje prawdziwy dla komórek w V .
�

Niech ω ∈ V będzie wektorem takim że (α, ω) 6= 0 dla α ∈ Λ, Λ+ = {α ∈
Λ : (α, ω) > 0}. Λ+ nazywamy zbiorem pierwiastków dodatnich. Λ+ zależy od
wyboru ω, dokładnie od wyboru komórki Weila do której należy ω. Jednakże Le-
mat 1.11 pokazuje że różne wybory dają równoważną teorię, tzn. można przejść
między różnymi wyborami przy pomocy elementu grupy Weila.

Lemat 1.12 Niech ∆ ⊂ Λ+ będzie zbiorem tych elementów Λ+ które dają
wszystkie kierunki ekstremalne stożka wypukłego generowanego przez Λ+. Wtedy
dla α, β ∈ ∆, α 6= β mamy (α, β) ≤ 0. Co więcej kąt pomiędzy α a β to
(n− 1)π/n dla pewnego n ∈ Z. Ponadto ∆ jest bazą V .

Dowód: Wiadomo że dowolny element właściwego domkniętego stożka wy-
pukłago jest kombinacją liniową o współczynnikach dodatnich elementów za-
dających kierunki ekstremalne. Czyli każdy element Λ+ jest kombinacją linową
elementów z ∆. Ponieważ Λ = Λ+ ∪ −Λ+ to również każdy element z Λ jest
kombinacją linową elementów z ∆. Lecz Λ rozpina V czyli ∆ rozpina V . Jeśli
V jest jednowymiarowe to ∆ składa się z jednego elementu i teza jest oczy-
wista. W przeciwnym razie dla α, β ∈ ∆ α 6= β rozpatrzmy podprzestrzeń
Vα,β = lin{α, β} ⊂ V . Niech Ω = Λ ∩ Vα,β zaś Ω+ = Λ+ ∩ Vα,β . Ω jest syste-
mem pierwiastków w przestrzeni dwuwymiarowej zaś Ω+ odpowiednim układem
pierwiastków dodatnich. Z lematu wiemy że po unormowaniu elementy Ω są
wierzchołkami 2n-kąta foremnego. n ≥ 2, przy tym dla n = 2 mamy czworokąt
i widać że α i β są ortogonalne. Dla n > 2 mamy |Ω+| = n, czyli pomiędzy α a
β musi być n− 1 innych pierwiasków, czyli kąt pomiędzy α a β to (n− 1)π/n.
Dla n > 2 to implikuje że (α, β) < 0.

Aby pokazać że ∆ jest liniowo niezależne rozważmy kombinację liniową
∑

α∈∆ aαα. Niech D+ = {α ∈ ∆ : aα > 0}, D− = {α ∈ ∆ : aα < 0} i niech
w =

∑

α∈D+
aαα, v =

∑

α∈D
−

aαα. Ponieważ dla α ∈ Λ+ mamy (ω, α) > 0

to (ω,w) =
∑

α∈D+
aα(ω, α) > 0 czyli w 6= 0 o ile D+ 6= ∅. Podobnie v 6= 0

o ile D− 6= ∅. Jeśli nie wszystkie współczynniki rozważanej kombinacji liniowej
znikają to co najmniej jeden z D+ lub D− jest niepusty. Jeśli dokładnie jeden
jest niepusty to poprzednie uwagi pokazują że ta kombinacja jest niezerowa.
Jeśli oba są niepuste to (w + v, w + v) = (w,w) + 2(w, v) + (v, v). Następnie
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(w, v) =
∑

α∈D+,β∈D
−

aαaβ(α, β) ≥ 0 bo aα > 0, aβ < 0, (α, β) ≤ 0, czyli
(w + v, w + v) ≥ (w,w) + (v, v) > 0, czyli w + v 6= 0 co pokazuje liniową nieza-
leżność. �

Diagramem Coxetera-Dynkina (lub krótko diagramem Dynkina) związanym
z Λ nazywany graf którego wierchołkami są elementy ∆ zaś krawędzię są po-
między takimi α, β ∈ ∆ że (α, β) < 0. Przy tym krawędzi przypisujemy wagę n
jeśli kąt pomiędzy α a β to (n− 1)π/n.

Ogólniej, możemy rozpatrywać układy wektorów ∆ takie że dla α, β ∈ ∆,
α 6= β kąt pomiędzy α a β to (n− 1)π/n dla pewnego n ∈ Z, n ≥ 2.

W diagramie Dynkina zredukowanego układu pierwiastkówmogą się pojawić
pierwiastki różnej długości, wtedy krawędź rysujemy jako strzałkę skierowaną
w kierunku krótszego wektora.

Lemat 1.13 Diagram Dynkina nierozkładalnego zredukowanego krystalograficz-
nego układu pierwiastków należy do jednej z wymienionych niżej rodzin:

• An: n wierzchołków połączonych w łańcuch krawędziami wagi 3,

• Bn: n wierzchołków z n ≥ 2 połączonych w łańcuch gdzie wagi krawędzi
są 3 za wyjątkiem ostatniego połączenia które ma wagę 4 zaś strzałka jest
w kierunku ostatniego wierzchołka,

• Cn: n wierzchołków z n ≥ 3 połączonych w łańcuch gdzie wagi krawędzi
są 3 za wyjątkiem ostatniego połączenia które ma wagę 4 zaś strzałka jest
w kierunku przedostatniego wierzchołka,

• Dn: n wierzchołków z n ≥ 4 gdzie n−1 wierzchołki są połączone w łańcuch,
zaś przedostatni wierzchołek łańcucha jest połączony z ostatnim wierzchoł-
kiem (który nie ma innych połączeń), przy tym wagi połączeń to 3,

• E6, E7, E8. n wierzchołków z n = 6, 7, 8 gdzie n− 1 wierzchołki są połą-
czone w łańcuch, zaś drugi od końca wierzchołek łańcucha jest połączony
z ostatnim wierzchołkiem (który nie ma innych połączeń), przy tym wagi
połączeń to 3,

• F4: cztery wierzchołki połączone w łańcuch, gdzie wagi skrajnych połączeń
to 3 zaś waga środkowego połączenia to 4, przy tym środkowe połączenie
jest skierowane (ale wybór kierunku daje izomorficzne diagramy),

• G2: dwa wierzchołki połączone krawędzią wagi 6 (która jest skierowana).

Ponadto istnieje niekrystalograficzny układ pierwiastków w przestrzeni wymiaru
3 i w przestrzeni wymiaru 4 (w obu przypadkach diagam to łańcuch ze skrajną
krawędzią wagi 5 a pozostałymi wagi 3) i rodzina niekrystalograficznych układów
na płaszczyźnie.

Uwaga: W zadaniach badaliśmy układ pierwiastków sl(n+1, F ). Z tego łatwo
wynika że odpowiedni diagram Dynkina to An. Podobnie, diagram Dynkina
algebry so(2n + 1, F ) to Bn zaś diagram Dynkina algebry so(2n, F ) to Dn

Wreszcie diagram Dynkina algebry sp(2n, F ) to Cn.
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Lemat 1.14 Diagram Dynkina nie zawiera cykli.

Dowód. Jeśli αi dla i = 1, . . . , k stanowią cykl, to biorąc ei = αi/|αi| i
v =

∑k

i=1 ei mam (v, v) =
∑k

i=1(ei, ei) + 2
∑

i6=j(ei, ej). Dla i 6= j połączonych
krawędzią kąt między ei a ej to co najmniej 2π/3, czyli (ei, ej) ≤ −1/2. W cyklu
mamy k par i, j połączonych krawędziami, co oznacza że (v, v) ≤ 0, co dałoby
sprzeczność z liniową niezależnością αi. �

Dla α ∈ ∆ niech eα = α/|α|. Dla α, β ∈ ∆ niech qα,β = (eα, eβ)

Lemat 1.15 Niech S ∈ ∆, α /∈ S. Wtedy
∑

β∈S q
2
α,β < 1

Dowód: Bez zmniejszania ogólności możemy zakładać że qα,β 6= 0 dla β ∈ S.
Z poprzedniego lematu (braku cykli) wynika teraz że qβ1,β2

= 0 dla β1, β2 ∈ S,
czyli {eβ ∈ S} jest bazą ortonormalną pewnej podprzestrzeni W ⊂ V . eα /∈ W ,
czyli rzut eα naW ma długość mniejszą niż 1. Lecz kwadrat tej długości wynosi
∑

β∈S(eα, eβ)
2 =

∑

β∈S q
2
α,β . �

Lemat 1.16 Spójny diagram Dynkina z krawędzią wagi ≥ 6 ma dwa wierz-
chołki.

Dowód. Niech α i β będą wierzchołkami połączonymi krawędzią wagi ≥ 6.
Gdyby było więcej wierzchołków to istniałaby wierzchołek γ połączony albo z α
albo z β. Bez utraty ogólności można zakładać że γ jest połączony z α. Waga 6
oznacza że q2α,β ≥ 3/4, q2α,γ ≥ 1/4 co dałoby sprzeczność z poprzednim lematem.

Lemat 1.17 Wierzchołek diagramu Dynkina jest połączony z co najwyżej trzema
innymi wierzchołkami. Jeśli jest połączony z trzema wierzchołkami to wagi kra-
wędzi to 3. Żaden wierzchołek nie należy do dwu krawędzi wagi ≥ 4.

Dowód. To wynika bezpośrednio z lematy o sumie q2α,β : q
2
α,β ≥ 1/4, a jeśli

waga jest większa niż 3 to q2α,β ≥ 1/2 �

Lemat 1.18 Diagram Dynkina zawiera co najwyżej jeden punkt rozgałęzienia i
co najwyżej jedną krawędź wagi ≥ 4. Jeśli jest punkt rozgałęzienia to wszystkie
wagi to 3.

Lematy powyżej i kilka następnych lematów tego typu w sumie daje dowód
podanego wyżej twierdzenia o klasyfikacji układów pierwiastków.
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