
1 Uzupełnienie o wolnej algebrze Liego
Wiemy że dla wolnej algebry Liego F generowanej przez zbiór X uniwersalna
algebra obwiednia U(F ) to algebra tensorowa T (M) generowane przez moduł
wolny generowany przez X. Wiemy że jeśli F jest modułem wolnym to wkłada
się różnowartościowo w U(F ). Jednakże na razie wiemy że F jest modułem
wolnym tylko wtedy gdy pierścień podstawowy R jest ciałem. Chcemy pokazać
że F jest modułem wolnym w ogólnym przypadku. Wystarczy to zrobić dla
R = Z. Mianowicie dla ogólnego R mamy

FR = R⊗Z FZ

gdzie dla FR i FZ indeks oznacza że rozważamy algebrę nad danym pierścieniem,
zaś ⊗Z oznacza że moduły traktujemy jako moduły nad Z. Łatwo pokazać że
jeśli FZ jest modułem wolnym nad Z to produkt wyżej jest modułem wolnym
nad R.

Aby pokazać wynik dla Z podamy alternatywną konstrukcję F .
Definicja. Magmą nazywamy zbiór z działaniem dwuargumentowym o któ-

rym nie robimy żadnych dodatkowych założeń.
Wolna magma generowana przez X to magma S z odwzorowaniem ι : X → S

taka że dla każdej magmy V i odwzorowania f : X → V istnieje dokładnie jeden
homomorfizm h z S w V taki że f = h ◦ ι.

Wolną magmę łatwo zbudować: bierzemy drzewa binarne takie że liśćmi są
elementy X. Dwa drzewa a i b mnożywmy w ten sposób że budujemy drzewo
którego lewym poddrzewem jest a zaś prawym poddrzewem jest b. Oczywiście
znając obrazy X-ów możemy obliczyć rekursywnie obraz drzewa: najpierw ob-
liczamy obrazy poddrzew, a potem wymnażamy otrzymane wartości. Widać że
jest to homomorfizm i że jest to jedyne przedłużenie f które daje homomorfizm.
A więc jest spełniona własność uniwersalna, czyli otrzymaliśmy wolną magmę.

Uwaga: o elementach wolnej magmy S możemy myśleć jako o wyrażeniach
(drzewach wyrażeń). Alternatywnie, możemy myśleć że elementy S to ciągi ele-
mentów X uzupełnione nawiasami tak by kolejność działań była jednoznaczna.

Mając wolną magmę S rozpatrujemy wolną algebrą niełączną N nad Z, tzn.
moduł wolny nad Z z bazą S. W N elementy bazy mnożymy zgodnie z regułami
S i przedłużamy działanie Z-liniowo na N . Łatwo zobaczyć że N spełnia na-
stępującą własność uniwersalną: dla dowolnego odwzorowania f : X → A gdzie
A jest algebrą niełączną nad Z istnieje dokładnie jeden homomorfizm algebr
niełącznych h z N w A taki że f = h ◦ ι gdzie ι jest włożeniem X w N . Miano-
wicie, dostajemy homomorfizm magm z S w A. Ten homomorfizm rozszerza się
Z-liniowo na N .

W N rozpatrujemy ideał I (tzn. podmoduł N zamknięty na mnożenie z
lewej i prawej strony przez elementy N) generowany przez elementy postaci s · s
i s · (t · u)− (s · t) · u− t · (s · u). Dzielenie przez ideał I oznacza że w N/I jest
spełniona antysymetria i tożsamość Jacobiego, czyli N/I jest algebrą Liego.

Twierdzimy że N/I ma własność uniwersalną wolnej algebry Liego nad Z.
Mianowicie, jeśli A jest algebrą Liego, to jest też algebrą niełączną, czyli dosta-
jemy homomorfizm h z N w A. Widać że elementy I są w przeprowadzane na 0
w A, czyli I jest w jądrze h, czyli h daje homomorfizm algebry ilorazowej N/I
w A. Jedyność otrzymanego homomorfizmu jest oczywista.

Zauważmy teraz że w N można wprowadzić pojęcie stopnia elementu: sto-
pień elementu S to ilość liści drzewa, stopień elementu n ∈ N to maksimum
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stopni s ∈ S w przedstawieniu n jako kombinacji liniowej elementów S z nieze-
rowymi współczynnikami. Widać że stopień iloczynu to iloczyn stopni. Element
n ∈ N nazywamy jednorodnym jeśli wszystkie elementy s ∈ S z niezerowymi
współczynnikami w przedstawieniu n mają ten sam stopień. Możemy zapisać

N = ⊕∞
k=1Nk

gdzie Nk to zbiór elementów N jednorodnych stopnia k.
Mamy też

I = ⊕∞
k=1Ik

gdzie Ik to zbiór elementów I jednorodnych stopnia k. Ta ostatnia równość wy-
nika z tego że jako generatory I można wybrać elementy jednorodne. Dokładniej,
tożsamość Jacobiego jest trójliniowa, więc mająć ją dla elementów jednorodnych
przez wieloliniowość otrzymamy ją dla sum. Równość s ·s = 0 jest nieco bardziej
kłopotliwa. Zauważmy że implikuje ona antysymetrię s · t+ t · s = 0. Antysyme-
tria jest dwuliniowa, więc z elementów jednorodnych rozszerzy się na dowolne.
Teraz piszemy s =

∑k
i=1 si gdzie si jest jednorodny stopnia i. Mamy

s · s =
k∑

i=1

si · si +
∑
j<i

sj · si + si · sj .

Druga suma zniknie na mocy antysymetrii, a w pierwszej sumie si · si = 0 jest
jednorodne. A więc faktycznie I jest generowany przez elementy jednorodne.

Mamy teraz
N/I = ⊕∞

k=1Nk/Ik.

Innymi słowy, N/I jest generowane przez elementy jednorodne. Zauważmy, że
jeśli X jest zbiorem skończonym to Nk/Ik jest modułem skończenie generowal-
nym.

Lemat 1.1 Jeśli R jest ciałem a X jest zbiorem skończonym, to wymiar R⊗Z
(Nk/Ik) nie zależy od R.

Dowód. Wiemy że R ⊗Z (N/I) = FR wkłada się w algebrę tensorową T (M)
gdzie M jest modułem wolnym (przestrzenią wektorową) z bazą X. Przy tym
R⊗Z(Nk/Ik) odwzorowuje się wzajemnie jednoznacznie na elementy jednorodne
stopnia k w F . A więc wystarczy pokazać że wymiar przestrzeni elementów
jednorodnych stopnia k w F nie zależy od R. Jednakże, na mocy lematu o bazie
algebry obwiedniej (twierdzenia PBW) przy ustalonym porządku na bazie F
elementy postaci

e1 . . . ek

z e1 ≤ e2 ≤ · · · ≤ ek gdzie ei są elementami bazy F stanowią bazę U(F ) =
T (M). Jeśli bazę F wybierzemy z elementów jednorodnych, to otrzymane ele-
menty bazy T (M) też będą jednorodne. A więc produkty wyżej stopnia k dają
nam bazę M⊗k. M⊗k ma wymiar |X|k. Zauważmy teraz że możemy rekur-
sywnie wyliczać wymiar przestrzeni rozpinanej przez elementy jednorodne F
stopnia k. Mianowicie, M⊗k jest suma prostą podprzestrzeni rozpinanej przez
elementy bazy F rzędu k i podprzestrzeni rozpinanej przez produkty elementów
bazy F niższego stopnia. Z założenia indukcyjnego ilość (elementów bazy F niż-
szego stopnia (dla każdego stopina z osobna) jest znana. To pozwala wyznaczyć
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wymiar przestrzeni rozpinanej przez produkty elementów bazy F . Teraz ilość
elementów jednorodnych bazy F stopnia k otrzymujemy jako różnicę wymiaru
M⊗k (czyli |X|k) i ilości produktów elemntów bazy F niższych stopni. □

Uwaga: Rozwijając powyższy argument można pokazać że

dim(R⊗Z (Nk/Ik)) =
1

k

∑
m|k

µ(m)dn/m

gdzie µ(m) jest funkcją Möbiusa, tzn. µ(m) = 0 jeśli m jest podzielne przez
kwardrat liczby pierwszej, w przeciwnym razie µ(m) = (−1)l gdzie l jest ilością
czynników pierwszych m.

Lemat 1.2 Jeśli M jest skończenie generowalnym modułem nad Z i wymiar
Zq ⊗Z M gdzie Zq jest ciałem reszt modulo q traktowanym jako Z-moduł nie
zależy od liczby pierwszej q to M jest modułem wolnym.

Dowód. Na mocy twierdzenia o strukturze skończenie generowanych grup abe-
lowych M można zapisać jako

M = Zk ⊕⊕pMp

gdzie Mp jest podmodułem elementów p-torsyjnych, tzn. istnieje l takie że
plMp = {0}. Przy tym tylko skończenie wiele składników w sume wyżej jest
niezerowe. Zauważmy teraz że jeśli q jest liczbą pierwszą różną of p to pl jest
odwracalne w Zq, czyli

Zq ⊗Z Mp = {0}.

Jeśli Mp jest nietrywialne i q = p to również Zq ⊗Z Mp jest nietrywialne. Wy-
bierając q różne od p z nietrywialnym Mp widzimy że

Zq ⊗Z M = Zk
q

czyli wymiar jest równy k. Gdyby któreś z Mp było nietrywialne, to biorąc q = p
otrzymalibyśmy wymiar większy niż k. A więc niezależność wymiaru od q im-
plikuje że wszystkie Mp są trywialne, co z kolei oznacza że M jest modułem
wolnym. □

Lemat 1.3 Wolna algebra Liego FR jest modułem wolnym dla dowolnego pier-
ścienia R i dowolnego zbioru generatorów X.

Dowód. Jeśli R = Z i X jest zbiorem skończonym to Lemat 1.1 i Lemat 1.2
implikują że

Nk/Ik

jest modułem wolnym nad Z, a więc również F jest modułem wolnym jako suma
prosta modułów wolnych.

Rozważmy teraz nieskończone X. Wystarczy pokazać że naturalne odwzoro-
wanie z F w T (M) jest różnowartościowe. Mianowicie, wtedy F jest izomorficzne
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z podmodułem T (M). Lecz T (M) jest modułem wolnym a nad Z podmoduł mo-
dułu wolnego jest wolny, więc również F jest modułem wolnym. Przypuśćmy że
x ∈ F jest niezerowy, ale ma zerowy obraz w T (M). x zawiera tylko skończenie
wiele zmiennych, czyli jest w obrazie pewnego NX0 gdzie X0 jest skończonym
podzbiorem X zaś NX0 oznacza wolną algebrę nieprzemienną generowaną przez
X0. x zadaje więc element x̃ wolnej algebry Liego F̃ generowanej przez X0.
x jest obrazem x̃ przez naturalne włożenie F̃ w F , a więc x̃ jest niezerowy.
Skoro X0 jest skończony, to F̃ jest modułem wolnym nad Z, a więc wkłada się
różnowartościowo w U(F̃ ) a więc również w T (M). Daje to sprzeczność z przy-
puszczeniem że obraz x jest zerem, co pokazuje że naturalne odwzorowanie z F
w T (M) faktycznie jest różnowartościowe, czyli F jest modułem wolnym.

Jak zauważyliśmy na początku tej części, wynik dla Z implikuje wynik dla
dowolnego pierścienia. □

2 Bazy Halla

Nasze dotychczasowe wyniki są zadowalające z teoretycznego punktu widzenia
i teoretycznie wystarczają do prowadzenia obliczeń w wolnej algebrze Liego.
Jednakże można uzyskać nieco bardziej jawny opis bazy wolnej algebry Liego.
Taki opis znacząco ułatwia oblicznia. Może też dać dodatkowe intuicje o budowie
wolnej algebry Liego.

Przy budowie bazy Halla musimy pracować z trzema różnymi zbiorami: ele-
mentami wolnej magmy S, elementami wolnej algebry Liego F będącymi ob-
razami elementów S i obrazami elementów S w półgrupie wolnej generowanej
przez X. Ogólnie jedno słowo w półgrupie wolnej jako przeciwobrazy ma wiele
elementów S. Jednakże w konstrukcji Halla są dodatkowe warunki które po-
wodują że dane słowo ma tylko jeden przeciwobraz spełniający te warunki. O
konstrukcji Halla można myśleć jako o rozmieszczeniu nawiasów w słowie, po
dodaniu nawiasów dostaniemy element (lub ciąg elementów) wolnej magmy S
które można odwzorować w F . Dodajmy że właściwe operacje to te z F , ale
większość rozumowań prowadzi się na elementach S albo słowach.

Istotną częścią konstrukcji Halla są przekształcenia otrzymanych elemen-
tów. Te przekształcenia zależą od porządku na tych elementach. W konstrukcji
można używać wiele różnych porządków i zmieniając porządek można uzyskać
trochę dodatkowych wyników. Jednakże można by też się ograniczyć do jednego
porządku. Przykładowy porządek który działa to porządek leksykograficzny na
słowach, gdzie startujemy z porządku liniowego na X i mówimy że słowo a jest
większe od słowa b jeśli pierwsza litera licząc od prawej w a jest większa od
pierwszej litery b. Jeśli pierwsze litery z prawej są równe, to porównujemy ke-
lejne aż znajdziemy różnicę. W przypadku gdy b jest prefiksem a to uznajemy
a za większe.

Uwaga: Porządek leksykograficzny na słowach nie wyznacza porządku linio-
wego na S. Jednakże dalej uzasadnimy że porządek leksykograficzny na słowach
wystarcza do konstrukcji którą przedstawimy.

Uwaga: Zwykle porządek leksykograficzny na słowach definiuje się inaczej,
zaczynając od lewej strony. Większość wyników by wtedy dalej działała, ale
lemat charakteryzujący słowa Halla względem porządku leksykograficznego za-
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leży od detali porządku. Nieco ogólniej, są możliwe różne konwencje i zależnie od
wyboru konwencji pewne fragmenty są mniej lub bardziej naturalne. Dziwna de-
finicja porządku leksykograficznego wydaje się być małym kosztem w stosunku
do bardziej naturalnego przedstawienia w innych miejscach.

Potrzebujemy jeszcze trochę notacji: gdy x = a · b jest elementem S to
piszemy a = L(x), b = R(x). Innymi słowy L daje lewe poddrzewo, R daje prawe
poddrzewo (te operacje nie są zdefiniowane gdy x jest zmienną). Dla elementów
s ∈ S jak poprzednio definiujemy stopień deg(s) jako długość odpowiadającego
mu słowa.

Definicja. Powiemy że podzbiór H ⊂ S z liniowym porządkiem jest zbiorem
Halla jeśli spełnia następujące warunki

• a ·b ∈ H wtedy i tylko wtedy gdy a, b ∈ H, a > b i albo a ∈ X lub a = c ·d
i d ≤ b,

• dla a · b ∈ H mamy a · b > b,

• X ⊂ H.

Lemat 2.1 Obraz H w F generuje F jako R moduł.

Dowód. Bez utraty ogólności można zakładać że X jest skończony. Z definicji
X ⊂ H, czyli H generuje F jako algebrę Liego. Aby pokazać lemat wystarczy
więc pokazać że nawias Liego obrazów elementów H jest Z-liniową kombinacją
obrazów elementów H. W dowodzie oznaczymy przez f naturalne odwzorowanie
z S w F . Dowód będzie indukcyjny, by indukcja działała potrzebujmy nieco
mocniejszy warunek

[f(a), f(b)] =
∑
i

cif(di)

z ci ∈ Z, i di > min(a, b). Ponadto żądamy by stopień deg(di) = deg(a)+deg(b).
Indukcja jest ze względu na deg(a) + deg(b), a w przypadku równości stopni ze
względu na odwrócone min(a, b), tzn. zakładamy że wynik zachodzi dla mniejszej
sumy długości i dla równej sumy długości z większym min(a, b). Zakładamy że
X jest skończony, więc jest tylko skończenie wiele drzew danej długości, więc
tylko skończenie wiele możliwości na min(a, b). A więc będzie działała zasada
indukcji. Ze względu na antysymetrię możemy zmienić kolejność a i b, co pozwala
zakładać że a > b. Jeśli wtedy a ∈ X lub a = e · g i g ≤ b, to a · b ∈ H i
[f(a), f(b)] = f(a · b). Ponadto a · b > b = min(a, b). A więc pozostaje rozważyć
przypadek gdy a = e · g i g > b. Wtedy na mocy własności porządku na zbiorze
Halla mamy e > g > b. Na mocy tożsamości Jacobiego mamy

[f(a), f(b)] = [[f(e), f(g)], f(b)] = [f(e), [f(g), f(b)]] + [[f(e), f(b)], f(g)].

Na mocy założenia indukcyjnego

[f(g), f(b)] =
∑

rif(vi),

gdzie ri są liczbami całkowitymi, deg(vi) = deg(g)+deg(b) i vi > min(g, b) = b.
A więc deg(e) + deg(vi) = deg(e) + deg(g) + deg(b) = deg(a) + deg(b), czyli dla
par e, vi suma stopni się nie zmienia a min(e, vi) > b = min(a, b). Czyli do

[f(e), [f(g), f(b)]]
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stosuje się założenie indukcyjne i możemy to zapisać jako Z-liniową kobinację
obrazów elementów H z tą samą sumą stopni i elementami > min(a, b).

Podobnie
[f(e), f(b)] =

∑
sif(wi)

gdzie si są liczbami całkowitymi, deg(wi) = deg(e)+deg(b), i wi > min(e, b) = b.
Znowu suma stopni się zgadza, zaś min(wi, g) > b, czyli również w tym przy-
padku stosuje się założenie indukcyjne. □

Lemat 2.2 Oznaczmy przez g naturalne odwzorowanie z S w półgrupę wolną i
niech H będzie zbiorem Halla. Niech w będzie elementem półgrupy wolnej (sło-
wem). Wtedy istnieje dokładnie jeden ciąg niemalejący hi ∈ H, i = 1..l taki
że

w = g(h1)g(h2) . . . g(hl)

Aby udowodnić ten lemat potrzebujmy dodatkowe defincje i lematy pomoc-
nicze.

Definicja. Powiemy że ciąg elementów hi ∈ H jest dopuszczalny jeśli dla
każdego i albo hi ∈ X, albo R(hi) ≤ hj dla j > i.

Oczywiście ciąg elementów X jest dopuszczalny. Również niemalejący ciąg
elementów H jest dopuszczalny. Mianowicie, z własności porządku na zbiorze
Halla R(hi) < hi, czyli skoro ciąg jet niemalejący to R(hi) < hi ≤ hj dla j < i.

W dalszym ciągu potrzebne nam będą przekszatałcenia ciągów dopuszczal-
nych (system przepisywania). Gdy a i b są ciągami dopuszczalnymi to piszemy
a → b (a może być przepisany w jednym kroku do b) gdy b różni się od a tym
że dwa sąsiednie elementy a są zastąpione przez ich produkt w S. → jest relacją
(może być więcej niż jeden wybór pary która da ciąg dopuszczalny. Powiemy
że a jest nieredukowalny jeśli nie istnieje b taki że a → b. Relacja →∗ jest do-
mknięciem tranzytywnym →, tzn. a →∗ a i jeśli a → b oraz b →∗ c to a →∗ c.
Przy tym a →∗ b wtedy i tylko wtedy gdy wynika to z podanych reguł.

Zauważmy że ciągi niemalejące są nieredukowalne: gdy ai ≤ ai+1 to produkt
ai · ai+1 nie należy do zbioru Halla. Jeśli a → b to b ma mniejszą długość niż a,
a więc po skończonej liczbie kroków otrzymamy ciąg nieredukowalny.

Lemat 2.3 Niech g oznacza naturalne odwzorowanie z S w półgrupę wolną ge-
nerowaną przez X (czyli słowa z lierami z X) i niech H będzie zbiorem Halla w
S. Jeśli h →∗ t to

g(h1)g(h2) . . . g(hk) = g(t1)g(t2) . . . g(tl).

Dla danego ciągu dopuszczalnego hi ∈ H, i = 1, . . . k istnieje niemalejący ciąg
ti ∈ H, i = 1, . . . , l taki że h →∗ t. Ponadto ciągi nieredukowalne są niemalejące.

Dowód. Gdy h → t to równość

g(h1)g(h2) . . . g(hk) = g(t1)g(t2) . . . g(tl)

jest oczywista. Jeśli h →∗ t to równość wyżej otrzymujemy przez indukcję.
Pozostaje pokazać istnienie niemalejącego t takiego że h →∗ t. Dowód jest in-

dukcyjny ze względu na długość h. Jeśli ciąg hi jest niemalejący, to mamy wynik.
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W przeciwnym razie istnieje i takie że hi > hi+1. Biorąc największe takie i mamy
hi+1 ≤ hi+2 ≤ · · · ≤ hk. Teraz zastępujemy parę hi i hi+1 przez e = hi · hi+1.
Mamy hi > hi+1 i R(hi) ≤ hi+1, a więc e ∈ H. Ponadto R(e) = hi+1 ≤ hj dla
j > i+1, więc warunek dopuszczalności jest spełniony dla e. Ciąg hj z j > i+1
jest jak poprzednio, więc warunek dopuszczalności jest spełniony dla tych ele-
mentów. Dla hj z j < i jest zmiana, musimy dodatkowo porównać R(hj) z e.
Lecz e > hi+1 ≥ R(hj) więc nowy ciąg jest dopuszczalny. Zmniejszyliśmy dłu-
gość ciągu, więc po skończonej ilości kroków proces się zatrzyma i otrzymamy
ciąg niemalejący. □

Lemat 2.4 Oznaczmy przez g naturalne odwzorowanie z S w półgrupę wolną i
niech H będzie zbiorem Halla. Niech w będzie elementem półgrupy wolnej (sło-
wem). Niech w̃ będzie ciągiem liter w. Jest to ciąg dopuszczalny. Niech h z
hi ∈ H, i = 1..l będzie ciągiem dopuszczalnym takim że

w = g(h1)g(h2) . . . g(hl)

Twierdzimy że w̃ →∗ h.

Dowód: Dowód indukcyjny, ze względu na odwrotny porządek dla długości. Tzn.
możemy zakładać wynik dla ciągów dłuższych niż l i potrzebujemy pokazać dla
l. Jeśli h składa się tylko z liter to w̃ = h czyli w̃ →∗ h. W przeciwnym razie
niech i będzie najmniejszym i takim że hi nie jest literą, czyli hi = a · b. Ciąg
t budujemy zastępując w h element hi przez parę elementów a i b. Dla j < i
elementy hj są literami więc warunek dopuszczalności jest spełniony. hi ∈ H
więc R(a) ≤ b = R(hi) ≤ hj dla j > i, czyli warunek dopuszczalność jest
spełniony dla a. Na mocy własności porządku R(b) < b = R(hi) czyli warunek
dopuszczalności będzie spełniony dla b. Końcowy ciąg elementów t zaczynając
po b jest taki sam jak w h, więc warunek dopuszczalności będzie spełniony dla
tych elementów. Oczywiście t → h i t jest dłuższy niż h, więc do t stosuje się
założenie indukcyjne i mamy w̃ →∗ t. Ale wtedy w̃ →∗ h □

Lemat 2.5 Jeśli a, b, c są ciągami dopuszczalnymi takimi że a → b, a → c i
b ̸= c to istnieje ciąg dopuszczalny d taki że b → d i c → d.

Dowód: Niech bi = ai · ai+1 i cj = aj · aj+1. Zamieniając miejscami b i c można
zakładać że i < j. Gdyby i = j + 1 to mielibyśmy ai > ai+1 > ai+1. Lecz
R(ai · ai+1) = ai+1 > ai+2 co przeczyłoby dopuszczalności b. A więc j ≥ i + 2
(zmiany się nie nakładają). Niech d będzie ciągiem otrzymanym z b zastępując
parę bj−1 = aj i bj = aj+1 przez bj−1 ·bj = aj ·aj+1. Ciąg ten jest dopuszczalny.
Mianowicie końcowy ciąg elementów d zaczynając od dj−1 jest taki sam jak
końcowy ciąg elementów c zaczynając od cj . Skoro ciąg c jest dopuszczalny to
na pozycjach ≥ j−1 warunek dopuszczalności jest spełniony dla d. Na pozycjach
< j − 1 przy sprawdzaniu dopuszczalności różnica w porównaniu do b jest taka
że zastąpiliśmy parę bj−1 i bj przez bj−1 · bj . Lecz bj−1 · bj > bj , więc warunek
dopuszczalności będzie spełniony. Oczywiście b → d.

Ciąg d można też otrzymać z c zastępując ci = ai i ci+1 = ai przez ci ·ci+1 =
ai · ai+1. Dopuszczalnośc d już pokazaliśmy, więc c → d. □
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Lemat 2.6 Jeśli ciągi a, b, h są dopuszczalne, h jest niemalejący, a → b, a →∗ h
to b →∗ h.

Dowód: Indukcja ze względu na ilość aplikacji → w a →∗ h. a jest redukowalne,
h jest nieredukowalne więc istnieje ciąg dopuszczalny c taki że a → c i c →∗ h.
Jeśli c = b to kończy dowód. W przeciwnym razie, na mocy Lematu 2.5 istnieje
ciąg dopuszczalny d taki że b → d i c → d. W c →∗ h ilość aplikacji → jest
zmniejszona o 1, więc na mocy założenia indukcyjnego d →∗ h. Lecz wtedy też
b →∗ h. □

Dowód lematu 2.2: Ciąg zmiennych jest dopuszczalny, więc na mocy Lematu
2.3 dla każdego w istnieje ciąg niemalejący h taki że w̃ →∗ h i

w = g(h1)g(h2) . . . g(hk)

co dowodzi istnienia. By pokazać jednoznaczność zauważmy że jeśli

w = g(h1)g(h2) . . . g(hk)

i ciąg h jest niemalejący to na mocy Lematu 2.4 mamy w̃ →∗ h. A więc wystar-
czy pokazać że a →∗ h i a →∗ t dla niemalejących ciągów h i t i dopuszczalnego
a implikuje h = t. Robimy to indukcyjnie ze względu na ilość aplikacji → w
a →∗ t. Jeśli jest to 0, tzn. a = t, to a jest nieredukowalny i a = h. W przeciw-
nym razie, niech a → b i b →∗ t. Na mocy Lematu 2.6 wtedy b →∗ h. W b →∗ t
ilość aplikacji → jest zmniejszona o 1, więc stosuje się założenie indukcyjne i
mamy h = t. □

Lemat 2.7 Niech H będzie zbiorem Halla w S. Wtedy obraz w F przez odwzo-
rowanie naturalne jest bazą algebry wolnej.

Dowód: Na mocy Lematu 2.1 obraz H generuje F . Pozostaje pokazać liniową
niezależność nad Z. Wystarczy to zrobić dla skończonego zbioru X. Dla skoń-
czonego X rozważamy FQ = Q ⊗Z F , i w FQ elementy jednorodne stopnia k.
Na mocy Lematu 2.2 ilość elementów H stopnia k jest równa wymiarowi Fk.
Dokładniej, oba ciągi liczb spełniają tą samą rekurencję która pozwala jed-
noznacznie wyznaczyć te liczby (jest to powtórzenie rozumowania z dowodu
Lematu 1.1). Gdyby elementy H były liniowo zależne, to wymiar byłby miejszy,
co dałoby sprzeczność. □

Mówmy że słowo w jest słowem Halla jeśli w = g(h), h ∈ H zaś g jest
naturalnym odwzorowaniem z S w półgrupę wolną. Na mocy Lematu 2.2 h jest
jednoznacznie wyznaczone przez w, czyli porządek na H jest wyznaczony przez
porządek na słowach Halla. Jednakże, konstrukcja zbioru Halla i dowodu jego
własności (takich jak Lematu 2.2) używa porządek, więc jest ryzyko błędnego
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koła. Jednakże można rozumować następująco: indukcyjnie budujemy zbiory Hk

i porządek na Hk rozszerzający porządek na słowach. H1 = X. Hk+1 zawiera
Hk i dodane elementy. Element a · b, a, b ∈ Hk dodajemy do Hk+1 wtedy i
tylko wtedy gdy a · b > b i są spełnione warunki niżej. Po pierwsze zgodnie z
porządkiem na słowach g(a · b) > g(b) (równość nie jest możliwa, bo g(a · b) jest
dłuższe niż g(b), czyli g(a · b) ̸= g(b)). Po drugie albo a ∈ H1 a = c · d i d ≤ b.
Zauważmy że porównania używają już zdefiniowany porządek na Hk. Na Hk+1

mamy porządek częściowy, zadany przez porządek na Hk i porządek na słowach.
To jest faktycznie porządek częściowy, bo porządek na Hk rozszarza porządek
na słowach. Teraz rozszerzamy porządek na Hk+1 do porządku liniowego. Suma

∞⋃
k=1

Hk

jest oczywiście zbiorem Halla. Do tego zbioru stosuje się Lemat 2.2 pokazując
że porządek jest jednoznacznie wyznaczony przez porządek na słowach Halla.

Zanotujmy prostą własność porządku leksykograficznego: jeśli b nie jest suf-
fiksem a i a > b to dla dowolnych c i d mamy ca < db. Mianowicie, wynik
porównania a > b jest wyznaczony przez porównanie liter, startując od końca
i któraś z liter da nam wynik (nie jest możliwy przypadek równości liter, bo
wtedy albo a byłoby sufiksem b, co by dało b ≥ a, lub b byłoby sufiksem a, co
wykluczamy z założenia). Oznacza to że dopisywanie dodatkowych liter na po-
czątku nie zmienia wyniku porównania. W szczególności ta własność zachodzi
gdy długość a jest mniejsza lub równa długości b i a > b (przy równej długości
a będąc sufiksem byłoby równe b, co jest sprzeczne z a > b).

Lemat 2.8 Słowo w jest słowem Halla względem porządku leksykograficznego
wtedy i tylko wtedy gdy jest mniejsze od dowolnego właściwego prefiksu w.

Dowód: Najpierw indukcyjnie pokażemy że słowa Halla spełniają podany waru-
nek. Gdy w jest literą to w ∈ H i zbiór prefiksów właściwych w jest pusty, czyli
warunek jest trywialnie spełniony. W kroku indukcyjnym możemy zakładać że
wynik zachodzi dla krótszych słów. Jeśli w = g(a · b) gdzie a, b ∈ H to niech k, l
będą długościami a i odpowiednio b. Jeśli v jest prefiksem w którego długość m
jest większa niż k, to ciąg u końcowych m − k liter v jest prefiksem g(b). g(b)
jest słowem Halla, więc na mocy założenia indukcyjnego u > g(b). Długość u
jest mniejsza niż długość g(b), więc na mocy własności wyżej mamy v > w. Jeśli
v jest prefiksem którego długość jest = k to v = g(a) > g(b). Jeśli g(b) nie jest
sufiksem v, to dalej na mocy własności wyżej v < w. Jeśli g(b) jest sufiksem
v, tzn. v = ug(b) to wynik porównania nie zależy od ostanich l liter, czyli do-
staniemy go porównując u z v = g(a). Na mocy założenia indukcyjnego u > v,
czyli również v > w. Jeśli długość v jest < k, to v jest właściwym prefiksem
g(a), czyli z założenia indukcyjnego v > g(a). Ale pokazaliśmy już że g(a) > w,
czyli v > w, co kończy dowód tej części.

W drugą stronę załóżmy że każdy właściwy prefix w jest większy niż w. Na
mocy Lematu 2.2 słowo w można zapisać jako produkt słów Halla hi:

w = h1h2 . . . hl

z h1 ≤ h2 ≤ · · · ≤ hl. Jeśli l = 1 to w jest słowem Halla co daje wynik. Jeśli
l > 1, h1 = hl to h1 < w co daje sprzeczność z założeniem. A więc można zakła-
dać że h1 < hl. Jeśli h1 nie jest sufiksem hl to na mocy własności wyżej mamy
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h1 < w co znowu daje sprzeczność z założeniem. Jeśli h1 jest sufiksem hl, to jest
też sufiksem w, czyli skoro w jest dłuższe, to h1 < w. A więc przypuszczenie że
l > 1 w każdym przypadku prowadzi do sprzeczności. □
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