1 Uzupelnienie o wolnej algebrze Liego

Wiemy ze dla wolnej algebry Liego F' generowanej przez zbiér X uniwersalna
algebra obwiednia U(F) to algebra tensorowa T'(M) generowane przez modut
wolny generowany przez X. Wiemy ze jesli F' jest modutem wolnym to wktada
sie roznowartosciowo w U(F'). Jednakze na razie wiemy ze F jest modulem
wolnym tylko wtedy gdy piersciert podstawowy R jest cialem. Chcemy pokazaé
ze F' jest modutem wolnym w ogélnym przypadku. Wystarczy to zrobié¢ dla
R = Z. Mianowicie dla og6lnego R mamy

Fr=R®yz Fy

gdzie dla Fr i Fy indeks oznacza ze rozwazamy algebre nad danym pierscieniem,
zas ®yz oznacza ze moduly traktujemy jako moduty nad Z. Latwo pokazaé ze
jesli Fy jest modutem wolnym nad Z to produkt wyzej jest modutem wolnym
nad R.

Aby pokaza¢ wynik dla Z podamy alternatywng konstrukcje F.

Definicja. Magma nazywamy zbiér z dzialaniem dwuargumentowym o kto-
rym nie robimy zadnych dodatkowych zatozen.

Wolna magma generowana przez X to magma S z odwzorowaniem ¢ : X — S
taka ze dla kazdej magmy V i odwzorowania f : X — V istnieje doktadnie jeden
homomorfizm h z S w V takize f = hou.

Wolna magme tatwo zbudowaé: bierzemy drzewa binarne takie ze lisémi sa
elementy X. Dwa drzewa a i b mnozywmy w ten sposéb ze budujemy drzewo
ktorego lewym poddrzewem jest a zas prawym poddrzewem jest b. Oczywiscie
znajac obrazy X-O6w mozemy obliczy¢ rekursywnie obraz drzewa: najpierw ob-
liczamy obrazy poddrzew, a potem wymnazamy otrzymane warto$ci. Wida¢ ze
jest to homomorfizm i Ze jest to jedyne przedtuzenie f ktore daje homomorfizm.
A wiec jest spetlniona wtasno$¢ uniwersalna, czyli otrzymaliSmy wolng magme.

Uwaga: o elementach wolnej magmy S mozemy mysle¢ jako o wyrazeniach
(drzewach wyrazen). Alternatywnie, mozemy mysleé ze elementy S to ciagi ele-
mentéw X uzupelnione nawiasami tak by kolejnosé dziatan byla jednoznaczna.

Majac wolna magme S rozpatrujemy wolna algebra nietaczna N nad Z, tzn.
modutl wolny nad Z z bazg S. W N elementy bazy mnozymy zgodnie z regulami
S i przedtuzamy dzialanie Z-liniowo na N. Latwo zobaczyé¢ ze N speklia na-
stepujaca wlasno$¢ uniwersalna: dla dowolnego odwzorowania f : X — A gdzie
A jest algebra nielaczng nad Z istnieje dokladnie jeden homomorfizm algebr
nietacznych h z N w A taki ze f = h o gdzie ¢ jest wlozeniem X w N. Miano-
wicie, dostajemy homomorfizm magm z S w A. Ten homomorfizm rozszerza sie
Z-liniowo na N.

W N rozpatrujemy ideal I (tzn. podmodul N zamkniety na mnozenie z
lewej i prawej strony przez elementy N) generowany przez elementy postaci s- s
is-(t-u)—(s-t)-u—t-(s-u). Dzielenie przez ideal I oznacza ze w N/I jest
spelniona antysymetria i tozsamosé¢ Jacobiego, czyli N/I jest algebra Liego.

Twierdzimy ze N/I ma wlasno$¢ uniwersalna wolnej algebry Liego nad Z.
Mianowicie, jesli A jest algebra Liego, to jest tez algebra nielaczna, czyli dosta-
jemy homomorfizm h z N w A. Wida¢ ze elementy I sa w przeprowadzane na 0
w A, czyli I jest w jadrze h, czyli h daje homomorfizm algebry ilorazowej N/I
w A. Jedynos$é otrzymanego homomorfizmu jest oczywista.

Zauwazmy teraz ze w N mozna wprowadzi¢ pojecie stopnia elementu: sto-
pient elementu S to ilosé lisci drzewa, stopieni elementu n € N to maksimum



stopni s € S w przedstawieniu n jako kombinacji liniowej elementéw S z nieze-
rowymi wspotczynnikami. Widaé ze stopien iloczynu to iloczyn stopni. Element
n € N nazywamy jednorodnym jesli wszystkie elementy s € S z niezerowymi
wspolczynnikami w przedstawieniu n maja ten sam stopieri. Mozemy zapisaé

N = @zolek

gdzie Ni to zbiér elementéw N jednorodnych stopnia k.
Mamy tez
I = EB]?;lIk

gdzie Ij to zbior elementéw I jednorodnych stopnia k. Ta ostatnia rownosé wy-
nika z tego ze jako generatory I mozna wybraé elementy jednorodne. Doktadniej,
tozsamosé Jacobiego jest trojliniowa, wiec majaé ja dla elementé6w jednorodnych
przez wieloliniowos¢ otrzymamy ja dla sum. Rownosé s-s = 0 jest nieco bardziej
klopotliwa. Zauwazmy ze implikuje ona antysymetrie s-t+t-s = 0. Antysyme-
tria jest dwuliniowa, wiec z elementéw jednorodnych rozszerzy sie na dowolne.
Teraz piszemy s = Zle s; gdzie s; jest jednorodny stopnia i. Mamy

k
S8 = E si~si+g Sj 8+ 8;+S5-
i=1

j<i

Druga suma zniknie na mocy antysymetrii, a w pierwszej sumie s; - s; = 0 jest
jednorodne. A wiec faktycznie I jest generowany przez elementy jednorodne.
Mamy teraz
N/I = @32 Ni/I.

Innymi stowy, N/I jest generowane przez elementy jednorodne. Zauwazmy, ze
jesli X jest zbiorem skoriczonym to Ny /I jest modutem skoniczenie generowal-
nym.

Lemat 1.1 Jesli R jest ciatem a X jest zbiorem skoniczonym, to wymiar R ®z
(Ni /1) nie zalezy od R.

Dowdd. Wiemy ze R ®z (N/I) = Fr wklada sie w algebre tensorows T (M)
gdzie M jest modutem wolnym (przestrzenig wektorowa) z baza X. Przy tym
R®y (N /1) odwzorowuje sie wzajemnie jednoznacznie na elementy jednorodne
stopnia k w F. A wiec wystarczy pokazaé¢ ze wymiar przestrzeni elementoéw
jednorodnych stopnia k w F' nie zalezy od R. Jednakze, na mocy lematu o bazie
algebry obwiedniej (twierdzenia PBW) przy ustalonym porzadku na bazie F'
elementy postaci

€1...€¢

ze; < ey < - < e gdzie e; sg elementami bazy F stanowia baze U(F) =
T(M). Jesli baze F' wybierzemy z elementéw jednorodnych, to otrzymane ele-
menty bazy T'(M) tez beda jednorodne. A wiec produkty wyzej stopnia k daja
nam baze M®*. M®* ma wymiar |X|¥. Zauwazmy teraz ze mozemy rekur-
sywnie wylicza¢ wymiar przestrzeni rozpinanej przez elementy jednorodne F'
stopnia k. Mianowicie, M®¥ jest suma prosta podprzestrzeni rozpinanej przez
elementy bazy F' rzedu k i podprzestrzeni rozpinanej przez produkty elementéw
bazy F' nizszego stopnia. Z zalozenia indukcyjnego ilos¢ (elementéw bazy F' niz-
szego stopnia (dla kazdego stopina z osobna) jest znana. To pozwala wyznaczyé



wymiar przestrzeni rozpinanej przez produkty elementéw bazy F. Teraz ilosé
elementéw jednorodnych bazy F' stopnia k otrzymujemy jako réznice wymiaru
M®* (czyli | X|*) i iloéci produktéw elemntéw bazy F nizszych stopni. d

Uwaga: Rozwijajac powyzszy argument mozna pokazaé ze

dim(R ®z (Ni/Ix)) = % Zu(m)dn/m
m|k

gdzie p(m) jest funkcja Mobiusa, tzn. u(m) = 0 jesli m jest podzielne przez
kwardrat liczby pierwszej, w przeciwnym razie u(m) = (—1)! gdzie [ jest iloécia
czynnikéw pierwszych m.

Lemat 1.2 Jesli M jest skoriczenie generowalnym modulem nad Z i wymiar
Zq ®z M gdzie Zq jest ciatem reszt modulo q traktowanym jako Z-modut nie
zalezy od liczby pierwszej q to M jest modutem wolnym.

Dowdd. Na mocy twierdzenia o strukturze skonczenie generowanych grup abe-
lowych M mozna zapisaé jako

M =7 o,M,

gdzie M, jest podmodulem elementéw p-torsyjnych, tzn. istnieje [ takie ze
p'M, = {0}. Przy tym tylko skoticzenie wiele sktadnikéw w sume wyzej jest
niezerowe. Zauwazmy teraz ze jesli ¢ jest liczba pierwsza rézng of p to p' jest
odwracalne w Z,, czyli

Zq @z M, = {0}.

Jedli M, jest nietrywialne i ¢ = p to réwniez Z; ®z M, jest nietrywialne. Wy-
bierajac ¢ rézne od p z nietrywialnym M, widzimy ze

Zq @z M =Z%

czyli wymiar jest réwny k. Gdyby ktores z M, bylo nietrywialne, to biorac ¢ = p
otrzymaliby$my wymiar wiekszy niz k. A wiec niezaleznosé wymiaru od ¢ im-
plikuje ze wszystkie M, sa trywialne, co z kolei oznacza ze M jest modulem
wolnym. O

Lemat 1.3 Wolna algebra Liego Fr jest modutem wolnym dla dowolnego pier-
Scienia R i dowolnego zbioru generatordw X.

Dowdd. Jesli R = Z i X jest zbiorem skonczonym to Lemat 1.1 i Lemat 1.2
implikuja ze
Ni /1y,
jest modulem wolnym nad Z, a wiec réwniez F' jest modutem wolnym jako suma
prosta modutéw wolnych.
Rozwazmy teraz nieskoniczone X. Wystarczy pokazaé ze naturalne odwzoro-
wanie z F' w T (M) jest roznowartosciowe. Mianowicie, wtedy F' jest izomorficzne



z podmodutem T'(M). Lecz T'(M) jest modutem wolnym a nad Z podmodut mo-
dutu wolnego jest wolny, wiec réwniez F' jest modulem wolnym. Przypusémy ze
x € F jest niezerowy, ale ma zerowy obraz w T'(M). x zawiera tylko skoniczenie
wiele zmiennych, czyli jest w obrazie pewnego Nx, gdzie X, jest skoriczonym
podzbiorem X za$ Ny, oznacza wolng algebre nieprzemienng generowang przez
Xp. x zadaje wiec element & wolnej algebry Liego F generowanej przez Xg.
x jest obrazem I przez naturalne wlozenie FweF,a wiec T jest niezerowy.
Skoro X jest skoniczony, to F' jest modutem wolnym nad Z, a wiec wklada sie
roznowartosciowo w U (F) a wiec rowniez w T'(M). Daje to sprzecznosé z przy-
puszczeniem ze obraz x jest zerem, co pokazuje ze naturalne odwzorowanie z F'
w T(M) faktycznie jest roznowartosciowe, czyli F' jest modutem wolnym.

Jak zauwazyliSmy na poczatku tej czesci, wynik dla Z implikuje wynik dla
dowolnego pierscienia. |

2 Bazy Halla

Nasze dotychczasowe wyniki sg zadowalajace z teoretycznego punktu widzenia
i teoretycznie wystarczaja do prowadzenia obliczeitn w wolnej algebrze Liego.
Jednakze mozna uzyskaé nieco bardziej jawny opis bazy wolnej algebry Liego.
Taki opis znaczaco ulatwia oblicznia. Moze tez da¢ dodatkowe intuicje o budowie
wolnej algebry Liego.

Przy budowie bazy Halla musimy pracowac z trzema roéznymi zbiorami: ele-
mentami wolnej magmy S, elementami wolnej algebry Liego F' bedacymi ob-
razami elementow S i obrazami elementow S w polgrupie wolnej generowanej
przez X. Ogolnie jedno stowo w polgrupie wolnej jako przeciwobrazy ma wiele
elementéw S. Jednakze w konstrukcji Halla sa dodatkowe warunki ktore po-
woduja ze dane stowo ma tylko jeden przeciwobraz spelniajacy te warunki. O
konstrukeji Halla mozna mys$leé jako o rozmieszczeniu nawiaséw w stowie, po
dodaniu nawiaséw dostaniemy element (lub ciag elementéw) wolnej magmy S
ktére mozna odwzorowaé w F. Dodajmy ze wlasciwe operacje to te z F', ale
wiekszo$¢ rozumowan prowadzi sie na elementach S albo slowach.

Istotna czescia konstrukcji Halla sa przeksztalcenia otrzymanych elemen-
tow. Te przeksztalcenia zaleza od porzadku na tych elementach. W konstrukeji
mozna uzywaé¢ wiele réznych porzadkoéw i zmieniajac porzadek mozna uzyskaé
troche dodatkowych wynikéw. Jednakze mozna by tez sie ograniczy¢ do jednego
porzadku. Przyktadowy porzadek ktory dziala to porzadek leksykograficzny na
stowach, gdzie startujemy z porzadku liniowego na X i méwimy ze stowo a jest
wieksze od stowa b jesli pierwsza litera liczac od prawej w a jest wieksza od
pierwszej litery b. Jesli pierwsze litery z prawej sa rowne, to poréwnujemy ke-
lejne az znajdziemy réznice. W przypadku gdy b jest prefiksem a to uznajemy
a za wieksze.

Uwaga: Porzadek leksykograficzny na stowach nie wyznacza porzadku linio-
wego na S. Jednakze dalej uzasadnimy ze porzadek leksykograficzny na stowach
wystarcza do konstrukeji ktora przedstawimy.

Uwaga: Zwykle porzadek leksykograficzny na slowach definiuje sie inaczej,
zaczynajac od lewej strony. Wiekszo$¢ wynikéw by wtedy dalej dzialata, ale
lemat charakteryzujacy stowa Halla wzgledem porzadku leksykograficznego za-



lezy od detali porzadku. Nieco ogélniej, sa mozliwe rézne konwencje i zaleznie od
wyboru konwencji pewne fragmenty sa mniej lub bardziej naturalne. Dziwna de-
finicja porzadku leksykograficznego wydaje sie by¢ malym kosztem w stosunku
do bardziej naturalnego przedstawienia w innych miejscach.

Potrzebujemy jeszcze troche notacji: gdy z = a - b jest elementem S to
piszemy a = L(z), b = R(z). Innymi stowy L daje lewe poddrzewo, R daje prawe
poddrzewo (te operacje nie sg zdefiniowane gdy x jest zmienna). Dla elementow
s € S jak poprzednio definiujemy stopien deg(s) jako dtugos§é¢ odpowiadajacego
mu stowa.

Definicja. Powiemy ze podzbiér H C S z liniowym porzadkiem jest zbiorem
Halla jesli spelnia nastepujace warunki

e a-be H wtedy i tylko wtedy gdy a,b€ H,a >bialboa € X luba=c-d
id<hb,

edlaa-be Hmamya-b>b,

e X CH.
Lemat 2.1 Obraz H w F generuje F' jako R moduf.

Dowdd. Bez utraty ogdlnosci mozna zakladaé ze X jest skoniczony. Z definicji
X C H, czyli H generuje F jako algebre Liego. Aby pokaza¢ lemat wystarczy
wiec pokazaé¢ ze nawias Liego obrazow elementéow H jest Z-liniowa kombinacja
obrazéw elementow H. W dowodzie oznaczymy przez f naturalne odwzorowanie
z S w F. Dowod bedzie indukcyjny, by indukcja dzialala potrzebujmy nieco
mocniejszy warunek
[f(@), fB)] =D cif(di)
1

z ¢; € Z,id; > min(a,b). Ponadto zadamy by stopieri deg(d;) = deg(a)+deg(b).
Indukcja jest ze wzgledu na deg(a) + deg(b), a w przypadku réwnosci stopni ze
wzgledu na odwrécone min(a, b), tzn. zaktadamy ze wynik zachodzi dla mniejszej
sumy dtugosci i dla réwnej sumy dtugosci z wiekszym min(a, b). Zaktadamy ze
X jest skoriczony, wiec jest tylko skoiiczenie wiele drzew danej dlugosci, wiec
tylko skoriczenie wiele mozliwosci na min(a,b). A wiec bedzie dzialala zasada
indukcji. Ze wzgledu na antysymetrie mozemy zmieni¢ kolejnosé a i b, co pozwala
zaktada¢ ze a > b. Jesli wtedy a € X luba =e-gig < b, toa-be H i
[f(a), f(b)] = f(a-b). Ponadto a-b > b = min(a,b). A wiec pozostaje rozwazy¢
przypadek gdy a =e-gig > b. Wtedy na mocy wlasnosci porzadku na zbiorze
Halla mamy e > g > b. Na mocy tozsamo$ci Jacobiego mamy

[f(a), F(O)] = [[f(e), £(9)), F(B)] = [f (), [£(9), F (D)) + [[£ (e), F ()], F(9)]-

Na mocy zalozenia indukcyjnego

b)] = Zﬁ‘f(vi)y

gdzie r; sa liczbami catkowitymi, deg(v;) = deg(g) +
A wiec deg(e) + deg(v;) = deg(e) + deg(g) + deg(b)

par e, v; suma stopni si¢ nie zmienia a min(e, v;) >

[f(e), [£(9), F(O)]]

( ) + deg(b), czyli dla

d (b) i v; > min(g,b) = b.
b in(a,b). Czyli do



stosuje sie zalozenie indukcyjne i mozemy to zapisaé¢ jako Z-liniowa kobinacje
obrazéw elementow H z ta sama suma stopni i elementami > min(a, b).

Podobnie
[F(e), FO)] = sif (wy)

gdzie s; sa liczbami catkowitymi, deg(w;) = deg(e)+deg(b), i w; > min(e,b) = b.
Znowu suma stopni sie zgadza, za$ min(w;, g) > b, czyli rowniez w tym przy-
padku stosuje sie zatozenie indukcyjne. O

Lemat 2.2 Oznaczmy przez g naturalne odwzorowanie z S w pdtgrupe wolng 1
niech H bedzie zbiorem Halla. Niech w bedzie elementem potgrupy wolnej (sto-
wem). Wiedy istnieje doktadnie jeden cigg niemalejgcy h; € H, i = 1.1 taki
ze

w = g(h1)g(h2) ... g(h)

Aby udowodni¢ ten lemat potrzebujmy dodatkowe defincje i lematy pomoc-
nicze.

Definicja. Powiemy ze ciag elementéw h; € H jest dopuszczalny jesli dla
kazdego i albo h; € X, albo R(h;) < h; dla j > i.

Oczywiscie ciag elementow X jest dopuszczalny. Rowniez niemalejacy ciag
elementéw H jest dopuszczalny. Mianowicie, z wlasnosci porzadku na zbiorze
Halla R(h;) < h;, czyli skoro ciag jet niemalejacy to R(h;) < h; < h; dla j < i.

W dalszym ciagu potrzebne nam beda przekszatalcenia ciagdéw dopuszczal-
nych (system przepisywania). Gdy a i b sa ciagami dopuszczalnymi to piszemy
a — b (a moze by¢ przepisany w jednym kroku do b) gdy b rozni sie od a tym
ze dwa sasiednie elementy a sa zastgpione przez ich produkt w .S. — jest relacja
(moze by¢ wiecej niz jeden wybor pary ktora da cigg dopuszezalny. Powiemy
ze a jest nieredukowalny jesli nie istnieje b taki ze a — b. Relacja —* jest do-
mknieciem tranzytywnym —, tzn. a —* a i jesli a — b oraz b —* ¢ to a =" c.
Przy tym a —* b wtedy i tylko wtedy gdy wynika to z podanych regut.

Zauwazmy ze ciagi niemalejace sa nieredukowalne: gdy a; < a;4+1 to produkt
a; - a;4+1 nie nalezy do zbioru Halla. Jesli a — b to b ma mniejsza dtugosé niz a,
a wiec po skonczonej liczbie krokéw otrzymamy ciag nieredukowalny.

Lemat 2.3 Niech g oznacza naturalne odwzorowanie z S w pétgrupe wolng ge-
nerowang przez X (czyli stowa z lierami z X ) ¢ niech H bedzie zbiorem Halla w
S. Jesli h —* t to

g(h1)g(he) ... g(hi) = g(t1)g(t2) ... g(tr).

Dla danego ciggu dopuszczalnego h; € H, i = 1,...k istnieje niemalejacy cigg
t,e Hyi=1,...,1 taki Ze h = t. Ponadto ciggi nieredukowalne sq niemalejgce.

Dowdd. Gdy h — t to réwnosé

g(h1)g(he) ... g(hy) = g(t1)g(t2) ... g(tr)

jest oczywista. Jesli h —* t to réwnos¢ wyzej otrzymujemy przez indukcje.
Pozostaje pokazaé istnienie niemalejacego t takiego ze h —* t. Dowod jest in-
dukcyjny ze wzgledu na dtugosé h. Jedli ciag h; jest niemalejacy, to mamy wynik.



W przeciwnym razie istnieje ¢ takie ze h; > h; . Biorac najwieksze takie ¢ mamy
hiv1 < higo < --- < hy. Teraz zastepujemy pare h; i h;1 przez e = h; - hiy1.
Mamy h; > hit1 1 R(h;) < hit1, a wiec e € H. Ponadto R(e) = hjy1 < h; dla
Jj > i+1, wiec warunek dopuszczalnoéci jest spetniony dla e. Ciag h; z j > ¢+1
jest jak poprzednio, wiec warunek dopuszczalnosci jest spelniony dla tych ele-
mentéw. Dla h; z j < i jest zmiana, musimy dodatkowo poréwnaé¢ R(h;) z e.
Lecz e > h;y1 > R(h;) wiec nowy ciag jest dopuszczalny. Zmniejszylismy diu-
gos¢é ciggu, wiec po skoriczonej ilosci krokéw proces sie zatrzyma i otrzymamy
ciag niemalejacy. t

Lemat 2.4 Oznaczmy przez g naturalne odwzorowanie z S w pdtgrupe wolng i
niech H bedzie zbiorem Halla. Niech w bedzie elementem pétgrupy wolnej (sto-
wem). Niech @ bedzie ciggiem liter w. Jest to cigg dopuszczalny. Niech h z
h; € H, i = 1..1 bedzie ciggiem dopuszczalnym takim Ze

w = g(h1)g(h2)...g(M)
Twierdzimy ze w —* h.

Dowdd: Dowod indukcyjny, ze wzgledu na odwrotny porzadek dla dhugosci. Tzn.
mozemy zaktadaé¢ wynik dla ciagéw dtuzszych niz [ i potrzebujemy pokazaé¢ dla
l. Jesli h sktada sie tylko z liter to w = h czyli w —* h. W przeciwnym razie
niech ¢ bedzie najmniejszym ¢ takim ze h; nie jest litera, czyli h; = a - b. Ciag
t budujemy zastepujac w h element h; przez pare elementéw a i b. Dla j < i
elementy h; sg literami wiec warunek dopuszczalnosci jest spetniony. h; € H
wigc R(a) < b = R(h;) < h; dla j > i, czyli warunek dopuszczalnosé jest
spelniony dla a. Na mocy wtasnosci porzadku R(b) < b = R(h;) czyli warunek
dopuszczalnosci bedzie spelniony dla b. Koiicowy ciag elementéw ¢ zaczynajac
po b jest taki sam jak w h, wiec warunek dopuszczalnosci bedzie spelniony dla
tych elementow. Oczywiscie t — h i t jest dtuzszy niz h, wiec do t stosuje sie
zalozenie indukeyjne i mamy w —* t. Ale wtedy w —* h O

Lemat 2.5 Jesli a, b, ¢ sq¢ ciggami dopuszczalnymi takimi ze a — b, a — ¢ 4
b # ¢ to istnieje ciqgg dopuszczalny d taki ze b — d i ¢ — d.

Dowdd: Niech b; = a; - a;41 1 ¢; = a; - aj41. Zamieniajac miejscami b i ¢ mozna
zaktada¢ ze i < j. Gdyby @ = j + 1 to mieliby$Smy a; > a;41 > a;41. Lecz
R(a; - aj41) = a;y1 > a;42 co przeczyloby dopuszezalnosdei b. A wiec j > i+ 2
(zmiany sie nie nakladaja). Niech d bedzie ciagiem otrzymanym z b zastepujac
par¢ bj_1 = a; ib; = ajq1 przez bj_1-b; = a;-a;41. Ciag ten jest dopuszczalny.
Mianowicie koncowy cigg elementéw d zaczynajac od dj_; jest taki sam jak
konicowy ciag elementéw c zaczynajac od c;. Skoro ciag c jest dopuszczalny to
na pozycjach > j—1 warunek dopuszczalnosci jest spetniony dla d. Na pozycjach
< j — 1 przy sprawdzaniu dopuszczalno$ci roznica w poréwnaniu do b jest taka
ze zastapiliSmy pare b;_q i b; przez b;_;1 - b;. Lecz b;_1 - b; > b;, wiec warunek
dopuszczalnosci bedzie spelniony. Oczywiscie b — d.

Ciag d mozna tez otrzymac z ¢ zastepujac ¢; = a; i ¢;11 = a; Przez ¢;-ciy1 =
a; - a;4+1. Dopuszczalnose d juz pokazalidmy, wiec ¢ — d. O



Lemat 2.6 Jesli ciggi a, b, h sq dopuszczalne, h jest niemalejgcy, a — b, a —* h
to b —* h.

Dowdd: Indukcja ze wzgledu na ilosé aplikacji — w a —* h. a jest redukowalne,
h jest nieredukowalne wiec istnieje cigg dopuszczalny ¢ taki ze a — cic —* h.
Jesli ¢ = b to koniczy dowdd. W przeciwnym razie, na mocy Lematu 2.5 istnieje
ciag dopuszczalny d taki ze b - dic — d. W ¢ —* h ilo§é aplikacji — jest
zmniejszona o 1, wiec na mocy zatozenia indukcyjnego d —* h. Lecz wtedy tez
b—* h. O

Dowdd lematu 2.2: Ciag zmiennych jest dopuszczalny, wiec na mocy Lematu
2.3 dla kazdego w istnieje ciag niemalejacy h taki ze w —* h i

w = g(h1)g(hz2)...g(h)

co dowodzi istnienia. By pokazaé jednoznacznos$é zauwazmy ze jesli

w = g(h1)g(h2)...g(hx)

i ciag h jest niemalejacy to na mocy Lematu 2.4 mamy @w —* h. A wiec wystar-
czy pokazaé ze a —* h i a —* t dla niemalejacych ciagéw h it i dopuszczalnego
a implikuje h = t. Robimy to indukcyjnie ze wzgledu na ilos¢ aplikacji — w
a —* t. Jedli jest to 0, tzn. a = ¢, to a jest nieredukowalny i a = h. W przeciw-
nym razie, niech a — bi b —* t. Na mocy Lematu 2.6 wtedy b —* h. W b —* ¢t
ilos¢ aplikacji — jest zmniejszona o 1, wiec stosuje sie zalozenie indukcyjne i
mamy h = t. |

Lemat 2.7 Niech H bedzie zbiorem Halla w S. Wtedy obraz w F przez odwzo-
rowanie naturalne jest bazq algebry wolnej.

Dowdd: Na mocy Lematu 2.1 obraz H generuje F. Pozostaje pokazaé liniows,
niezalezno$¢ nad Z. Wystarczy to zrobi¢ dla skonczonego zbioru X. Dla skori-
czonego X rozwazamy Fgp = Q ®z F, i w Fg elementy jednorodne stopnia k.
Na mocy Lematu 2.2 ilo$¢ elementéw H stopnia k jest rowna wymiarowi Fj.
Doktladniej, oba ciagi liczb spelniaja ta sama rekurencje ktéra pozwala jed-
noznacznie wyznaczyé te liczby (jest to powtoOrzenie rozumowania z dowodu
Lematu 1.1). Gdyby elementy H byly liniowo zalezne, to wymiar bytby miejszy,
co daloby sprzecznosé. |

Mowmy ze stowo w jest stowem Halla jesli w = g(h), h € H za$ g jest
naturalnym odwzorowaniem z S w pélgrupe wolna. Na mocy Lematu 2.2 h jest
jednoznacznie wyznaczone przez w, czyli porzadek na H jest wyznaczony przez
porzadek na stowach Halla. Jednakze, konstrukcja zbioru Halla i dowodu jego
wlasnosdci (takich jak Lematu 2.2) uzywa porzadek, wiec jest ryzyko blednego



kota. Jednakze mozna rozumowaé nastepujaco: indukcyjnie budujemy zbiory Hy,
i porzadek na Hj rozszerzajacy porzadek na stowach. H; = X. Hy zawiera
Hy, i dodane elementy. Element a - b, a,b € Hj dodajemy do Hy41 wtedy i
tylko wtedy gdy a - b > b i sa spelnione warunki nizej. Po pierwsze zgodnie z
porzadkiem na stowach g(a-b) > g(b) (réownosé nie jest mozliwa, bo g(a-b) jest
dtuzsze niz g(b), czyli g(a - b) # g(b)). Po drugie alboa € Hy a=c-did <b.
Zauwazmy ze poréwnania uzywaja juz zdefiniowany porzadek na Hy. Na Hyyq
mamy porzadek czesciowy, zadany przez porzadek na Hj i porzadek na stowach.
To jest faktycznie porzadek czesciowy, bo porzadek na Hj rozszarza porzadek
na stowach. Teraz rozszerzamy porzadek na Hj,1 do porzadku liniowego. Suma

U &
k=1

jest oczywiscie zbiorem Halla. Do tego zbioru stosuje si¢ Lemat 2.2 pokazujac
ze porzadek jest jednoznacznie wyznaczony przez porzadek na stowach Halla.

Zanotujmy prosta wtasnosé¢ porzadku leksykograficznego: jesli b nie jest suf-
fiksem a i a > b to dla dowolnych ¢ i d mamy ca < db. Mianowicie, wynik
poréwnania a > b jest wyznaczony przez poréwnanie liter, startujac od korica
i ktoras z liter da nam wynik (nie jest mozliwy przypadek roéwnosci liter, bo
wtedy albo a byloby sufiksem b, co by dato b > a, lub b bytoby sufiksem a, co
wykluczamy z zalozenia). Oznacza to ze dopisywanie dodatkowych liter na po-
czatku nie zmienia wyniku poréwnania. W szczegoélnosci ta wlasno$é zachodzi
gdy dlugosé a jest mniejsza lub réwna dlugosci b i a > b (przy rownej dtugosei
a bedac sufiksem byloby rowne b, co jest sprzeczne z a > b).

Lemat 2.8 Stowo w jest stowem Halla wzgledem porzqdku leksykograficznego
wtedy i tylko wtedy gdy jest mniejsze od dowolnego wltasciwego prefiksu w.

Dowadd: Najpierw indukcyjnie pokazemy ze stowa Halla spetniaja podany waru-
nek. Gdy w jest literg to w € H i zbior prefiksow wlasciwych w jest pusty, czyli
warunek jest trywialnie spetniony. W kroku indukcyjnym mozemy zaktadaé ze
wynik zachodzi dla krotszych stow. Jesli w = g(a - b) gdzie a,b € H to niech k,
beda dlugosciami a i odpowiednio b. Jesli v jest prefiksem w ktorego dtugosé m
jest wieksza niz k, to ciag u koricowych m — k liter v jest prefiksem g(b). g(b)
jest stowem Halla, wiec na mocy zalozenia indukcyjnego u > g(b). Dlugosé u
jest mniejsza niz dtugosé g(b), wiec na mocy wlasnosci wyzej mamy v > w. Jesli
v jest prefiksem ktorego dtugosé jest = k to v = g(a) > g(b). Jesli g(b) nie jest
sufiksem v, to dalej na mocy wilasnosci wyzej v < w. Jesli g(b) jest sufiksem
v, tzn. v = ug(b) to wynik poréwnania nie zalezy od ostanich [ liter, czyli do-
staniemy go poréwnujac u z v = g(a). Na mocy zalozenia indukcyjnego u > v,
czyli rowniez v > w. Jedli dltugosé v jest < k, to v jest wlasciwym prefiksem
g(a), czyli z zalozenia indukeyjnego v > g(a). Ale pokazalismy juz ze g(a) > w,
czyli v > w, co koriczy dowod tej czesci.

W druga strone zalozmy ze kazdy wlasciwy prefix w jest wiekszy niz w. Na
mocy Lematu 2.2 stowo w mozna zapisaé¢ jako produkt stow Halla h;:

w:h1h2...hl

z hy < hg <--- < hy. Jeslil =1 to w jest stowem Halla co daje wynik. Jesli
I >1, hy = h; to hy < w co daje sprzeczno$c¢ z zalozeniem. A wiec mozna zakta-
daé¢ ze hy < hy. Jesli hq nie jest sufiksem h; to na mocy wlasnosci wyzej mamy



h1 < w co znowu daje sprzecznosc¢ z zatozeniem. Jesli hy jest sufiksem hy, to jest
tez sufiksem w, czyli skoro w jest dhuzsze, to hy < w. A wiec przypuszczenie ze
I > 1 w kazdym przypadku prowadzi do sprzecznosci. O
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