Linear algebra 1R, problem sheet 10

- 1. Prove: if two of vectors X_1, \ldots, X_l are equal, then X_1, \ldots, X_l are linearly dependent.
- 2. Check in different ways if the following sets of vectors are linearly independent: (a) $(1,1,0)^{\top}$, $(0,1,1)^{\top}$, $(1,0,1)^{\top}$; (b) $(1,0,1)^{\top}$, $(0,1,0)^{\top}$; (c) $(1,2,-3)^{\top}$, $(-1,-1,2)^{\top}$, $(3,-2,-1)^{\top}$.
- 3. Check via computation $det(M) = det(M^{\top})$ (for 3×3 matrix).
- 4. Compute determinants:

	1	$\overline{2}$	$3 \mid$	-1	5	4	0	2	$2 \mid$	a	b	$c \mid$	a	d	$e \mid$	1	1	-1	a	$^{-1}$	0	
	5	1	4 ,	3	-2	0 ,	2	0	2 ,	b	c	a ,	0	b	f ,	3	5	5	, b	x	-1	
	3	2	5	-1	3	6	2	2	0	c	a	b	0	0	c	-2	2	2	c	-1 x 0	x	

- 5. Let k < l. Prove: (a) if X_1, \ldots, X_l are linearly independent, then X_1, \ldots, X_k are linearly independent; (b) if X_1, \ldots, X_k are linearly dependent, then X_1, \ldots, X_l are linearly dependent.
- 6. Prove that, 4 arbitrary vectors in \mathbf{R}^3 are linearly dependent.
- 7. Which of conditions below are equivalent to linear independence of vectors $X_1, X_2, X_3 \in \mathbb{R}^3$? Prove or find counterexample.
 - a) No of two vectors among X_1, X_2, X_3 are collinear.
 - b) X_1 is not a linear combination of $X_2, X_3; X_2$ is not a linear combination of; additionally $X_3 \neq 0$.
- 8. Prove: if $X \perp Y \perp Z \perp X$ and $X, Y, Z \neq 0$, then X, Y, Z are linearly independent.
- 9. Write down first of given vectors as a linear combination of the other (or check that this is impossible):

(a)
$$\begin{pmatrix} 0\\1\\1 \end{pmatrix}$$
; $\begin{pmatrix} 2\\0\\1 \end{pmatrix}$; $\begin{pmatrix} 0\\-2\\1 \end{pmatrix}$; (b) $\begin{pmatrix} 1\\2\\-1 \end{pmatrix}$; $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$; $\begin{pmatrix} 3\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\2 \end{pmatrix}$; (c) $\begin{pmatrix} 3\\2\\1 \end{pmatrix}$; $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$, $\begin{pmatrix} 2\\0\\-2 \end{pmatrix}$, $\begin{pmatrix} 1\\-2\\-5 \end{pmatrix}$;
(d) $\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$; $\begin{pmatrix} 2\\0\\2 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\2 \end{pmatrix}$, $\begin{pmatrix} -1\\1\\0 \end{pmatrix}$; (e) $\begin{pmatrix} 1\\1\\-2 \end{pmatrix}$; $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\3\\4 \end{pmatrix}$;

10. It is known that U: (1) is contained in plane x-y+2z+3=0, (2) is orthogonal to vector $W=(1,0,-3)^{\top}$, (3) parallelepiped determined by vectors $U, W, (-2, -1, 1)^{\top}$ have volume 72. Find U.

11. Compute distance of $(1,2,3)^{\top}$ from (a) line $\frac{x-1}{3} = \frac{2y+4}{3} = \frac{z+1}{1}$; (b) plane 2x - y + 2 = 5.

- 11. Compute distance of $(1, 2, 3)^{-1}$ from (a) nine $\frac{1}{3} = \frac{1}{3} = \frac{1}{3}$, (c) remains $(a) \begin{cases} 2x + y + z = 3 \\ x + 2y + z = 0 \\ x + y + 2z = 9 \end{cases}$
- 13. Find polynomial f(x) of degree 2, such that f(1) = 8, f(-1) = 2, f(2) = 14.
- 14. Check that $\det(A + B, B + C, C + A) = 2 \det(A, B, C), (x y)(y z)(z x) = \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix}$ 15. Find out if given sets of vectors are positively oriented or negatively oriented: (a) $(1.6.3)^{\top}, (-1.0.2)^{\top}, (2.1.1)^{\top}$ (b) $(1.6.2)^{\top}, (2.1.1)^{\top}, (1.5.2)^{\top}, (2.1.1)^{\top}$ (a) $(1,6,3)^{\top}$, $(-1,0,2)^{\top}$, $(2,1,1)^{\top}$ (b) $(1,6,3)^{\top}$, $(2,-1,1)^{\top}$, $(-1,7,2)^{\top}$
- 16. Prove: if A, B, C (in given order) are positively oriented, then also -A, -B, C; A + B, B, C are positively oriented.