Linear algebra 1R, problem sheet 11

- 1. Prove: $\ker(F \circ G) \supseteq \ker(G)$, $\operatorname{Im}(F \circ G) \subseteq \operatorname{Im}(F)$ where F, G are linear transformations.
- 2. Find nonparametric equations describing images and kernels of transformations $\mathbf{R}^n \to \mathbf{R}^k$ given by matrices: $\langle E \rangle \langle 1 \rangle \rangle \langle 2 \rangle$

$$\begin{pmatrix} 1 & -2 & 3 \\ -3 & 6 & -9 \end{pmatrix}; (5 & -1 & 2); \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix}; \begin{pmatrix} 1 & 0 & 3 \\ 3 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix}; 3. Find general form of solution of $AX = Y$ (a) for: $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \\ 7 & -4 \end{pmatrix}, \begin{pmatrix} 1 & 3 & -2 \\ 3 & 9 & -6 \\ -2 & -6 & 4 \end{pmatrix}; $(-1, 3, 0)^{\top}, (1, 0, 3)^{\top}, (1, 3, 0)^{\top}, (4, 12, -8)^{\top};$ (b) for $A = \begin{pmatrix} 1 & -2 & 3 \\ -3 & 6 & -9 \end{pmatrix}; Y = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} -5 \\ 15 \end{pmatrix}, \begin{pmatrix} 90 \\ -30 \end{pmatrix}.$$$$

4. Prove: if AX = Y has two solutions, then it has infinitely many solutions.

5. Find
$$M^{-1}$$
. Try all methods known to you: $M = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$; $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$; $\begin{pmatrix} 5 & 5 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$; $\begin{pmatrix} 1 & -1 & 2 \\ 6 & 0 & 1 \\ 3 & 2 & 1 \end{pmatrix}$; $\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$; $\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$.

- 6. Find matrix of (a) (orthogonal) projection onto plane 3x + 2y z = 0; (b) (orthogonal) projection onto line $X = t(1, 0, -7)^{\top}$; (c) symmetry with respect to line $X = t(-1, 2, 1)^{\top}$.
- 7. Write down matrices of rotation by angle θ around x axis and around y axis. For $\theta = \pi/2$ compute superposition of those rotations in two possible orders.
- 8. Find matrix of rotation by angle $2\pi/3$ around line x = y = z. (There are two such rotations (depending on orientation); choose one.)
- 9. Let $F: \mathbf{R}^2 \to \mathbf{R}^3$ and $G: \mathbf{R}^3 \to \mathbf{R}^2$ be linear transformations
 - a) Prove that F is not onto (surjective).
 - b) Prove that G is not injective.
 - c) Prove that $F \circ G$ is not invertible.
- 10. Give examples of linear transformations $F, G : \mathbb{R}^3 \to \mathbb{R}^3$, such that (a) $\ker(F) \subset \operatorname{Im}(F)$ (b) $\operatorname{Im}(G) \subset \operatorname{Im}(F)$ $\ker(G)$. Try to find both trivial and nontrivial examples.
- 11. Give example of linear transformation $F: \mathbb{R}^3 \to \mathbb{R}^3$, which has a plane as an image, kernel is a line and angle between kernel and image is 60° . Write down matrix of this transformation.
- 12. It is known that $F, G, H : \mathbb{R}^3 \to \mathbb{R}^3$ are linear transformations such that $F \circ G \circ H$ is surjective, $det(G) = -4, H = F \circ G \circ F$. Prove that F is injective.

13. Prove: if
$$N^3 = 0$$
, then $(I+N)^{-1} = I - N + N^2$. Use this formula to compute $\begin{pmatrix} 1 & 2 & 5 \\ 0 & 1 & 7 \\ 0 & 0 & 1 \end{pmatrix}^{-1}$.

- 14. Are the following formulas true (for invertible 3×3 matrices): $(MN)^{-1} = M^{-1}N^{-1}$, $(M+N)^{-1} = M^{-1}N^{-1}$ $M^{-1} + N^{-1}$, $\det(aM) = a \det(M)$, $\det(M + N) = \det(M) + \det(N)$?
- 15. Prove that for every vector $A \in \mathbf{R}^3$ transformation M_A given by formula $M_A(X) = A \times X$ is linear. Write down its matrix in terms of coordinates of A.

16. Compute determinant of matrix
$$\begin{pmatrix} 121 & -248 \\ -321 & 625 \\ 144 & -91 \end{pmatrix} \begin{pmatrix} 321 & 231 & 123 \\ -619 & 26 & -17 \end{pmatrix}$$
. Hint: answer is immediate, without computation

- 17. Let $M, N \in M_{3\times 3}$. It is known that $\det(MN) \neq 0$. Prove that M i N are invertible.
- 18. Let $F: \mathbf{R}^3 \to \mathbf{R}^3$ be a linear transformation. Prove: if ker(F) is one point/a line/a plane/ \mathbf{R}^3 , then $\operatorname{Im}(F)$ is \mathbb{R}^3/a plane/a line/one point, respectively.