Linear algebra 1R, problem sheet 13

1. Check that given matrix matrix of an isometry. Is this isometry a rotation or is it a composition of reflection with respect to a plane and a rotation? Find axis and angle.

$$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}; \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}.$$

- 2. Write down a quadratic form Q on \mathbf{R}^3 such that $Q((1,2,3)^{\top}) = -7$.
- 3. Let $Q((x, y, z)^{\top}) = xy + yz + zx$. Find vector U such that: (a) Q(U) = 1; (b) Q(U) = -1; (c) Q(U) = 0.
- 4. Draw surfaces: $x^2 = 0$, $x^2 + 4y^2 + 4z^2 = 0$, $x^2 + z^2 = 0$, $x^2 + z^2 = 1$, $x^2 y^2 = 0$, $x^2 + y^2 z^2 = -1$, $x^2 + y^2 + z^2 = 0$, $-x^2 + y^2 + z^2 = 1$, $z y^2 = 0$.
- 5. Give an example of equation of degree 2 in three variables which has a line (in \mathbb{R}^3) as a solution set.

6. Find symmetric matrix $A \in M_{3\times 3}(\mathbf{R})$ such that $A\begin{pmatrix}1\\1\\1\end{pmatrix} = \begin{pmatrix}2\\2\\2\end{pmatrix}, A\begin{pmatrix}1\\-2\\1\end{pmatrix} = \begin{pmatrix}-1\\2\\-1\end{pmatrix}$ and number 3 is an eigenvalue of A.

- 7. Find symmetric matrix $A \in M_{3\times 3}(\mathbf{R})$ such that $\chi_A(x) = 2x^2 x^3$ and each vector in the plane 2x + y + z = 0is an eigenvector of A.
- 8. Give an example of symmetric matrix S of dimension 3×3 and its three linearly independent eigenvectors such that no two of them are orthogonal.
- 9. Assume that X is an eigenvector of matrix $A \in M_{3\times 3}(\mathbf{R})$ such that $A^{\top} = I A$. Prove: if $Y \perp X$, then $AY \perp X.$
- 10. Assume that $A \in M_{3\times 3}(\mathbf{R})$ is symmetric, $AX = \lambda X$, $AY = \mu Y$, $\langle X, Y \rangle \neq 0$. Prove that $\lambda = \mu$. Infer from this that each linear combination of vectors X and Y is an eigenvector of A.
- 11. Prove: if linearly independent vectors $X, Y \in \mathbf{R}^3$ are eigenvectors of a symmetric matrix $A \in M_{3\times 3}(\mathbf{R})$, then vector $X \times Y$ is an eigenvector of A.
- 12. Give an example of quadratic form Q on \mathbb{R}^3 such that $Q(E_1), Q(E_2), Q(E_3) > 0$, but for some $U \in \mathbb{R}^3$ we have Q(U) < 0.
- 13. Let Q be a quadratic form on \mathbb{R}^3 , and $U, V \in \mathbb{R}^3$ be such that Q(U) = -Q(V) = 1. Prove that there exist infinitely many vectors $W \in \mathbf{R}^3$, such that Q(W) = 0.
- 14. It is known that surface of degree 2 given by equation $ax^2 + 2bxy + 2cxz + dy^2 + 2eyz + fz^2 + g = 0$ may be an ellipsoid, a one sheet hyperboloid, a two sheet hyperboloid, ... Complete the list considering all possible canonical forms of this equation. Include also degenerate cases like a point.