Linear algebra 1R, problem sheet 14

- 1. Justify: if matrix $A \in M_{3\times 3}(\mathbf{R})$ has a nonreal eigenvalue, then A can be put in diagonal form over **C**.
- 2. Give an example of hyperbolic paraboloid and a line on it.
- 3. Transform surfaces below to canonical form: write down matrix of corresponding quadratic form; find eigenvalues and orthogonal basis consisting of eigenvectors; write down canonical form of the equation and transformation matrices linking coordinates x, y, z and x', y', z' where the equation has canonical form. Identify the surfaces, draw them in x', y', z'-coordinates. Using canonical form find out geometric properties of the surface (length of half-axes, symmetries or lack of them, distance between sheets, angle of asymptotic cone etc.). Describe position of the surfaces in x, y, z-coordinates (giving direction of axes, axis of symmetry or of asymptotic cone etc.).

 - (a) $x^2 5y^2 + z^2 + 4xy + 2xz + 4yz = 3$, (e) $11x^2 + 4xy 16xz + 2y^2 + 20yz + 5z^2 = 9$, (f) $-2xz + y^2 = 1$,

(g)
$$5x^2 - 2xy - 2xz + 5y^2 - 2yz + 5z^2 = 3$$
,

- 4. Like above but for:
 - (c) $x^2 4y^2 4yz z^2 = 0$, (d) $6x^2 + 5y^2 + 7z^2 - 4xy + 4xz = 0$, (h) $x^2 + y^2 + 5z^2 - 6xy - 2xz + 2zy = 0$, (j) $2x^2 - 8xy + 8y^2 + 12xz - 24yz + 18z^2 = 1$.
- 5. For each polynomial given below find number of positive roots and number of negative roots (and check if 0 is a root). Find multiplicity of roots. (Hint: compute derivative; find its extremal values, intervals of monotonicity, values of the polynomial at endpoints and value at 0. Frequently it is enough to compute values of polynomial at few points.) (a) $-x^3 + 7x^2 + 2x - 1$, (b) $x^3 - 4x^2 + 17x - 1$, (c) $x^3 + 3x$, (d) $x^3 + x^2 - 8x - 12$, (e) $x^3 + 2x^2 - x + 2$, (f) $x^3 + x^2 + x + 3$.
- 6. Identify surfaces (for example as an ellipsoid, a pair of planes, etc.) without computing full canonical form, but only by finding out needed signs.
 - (a) $x^2 2xy + 2y^2 + 4xz + 3z^2 = 1$, (b) $x^2 2xy + 2xz + 4yz + 3z^2 = 0$,

 - (c) $x^2 + 2xy + 2y^2 + 2xz + 2yz + 4z^2 = 1$, (d) $-2x^2 + 2xy + y^2 + 2xz + 6yx 2z^2 = 1$.
- 7. Assume that matrices $A, B \in M_{3\times 3}(\mathbf{R})$ both have characteristic polynomial $(3-x)(5-x)^2$, but neither one can be put in diagonal form. Prove that there exists invertible matrix P such that $A = PBP^{-1}$.
- 8. Transform to Jordan form:

$$\begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix}; \quad \begin{pmatrix} 4 & -5 & 7 \\ 1 & -4 & 9 \\ -4 & 0 & 5 \end{pmatrix}; \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix}.$$

- 9. Let Q be a quadratic form on \mathbb{R}^2 and $F: \mathbb{R}^3 \to \mathbb{R}^2$ a linear transformation. (a) Check that $Q \circ F$ is a quadratic form form \mathbf{R}^3 . (b) Show that 0 is one of coefficients of canonical form of $Q \circ F$.
- 10. For few surfaces below find canonical form; name the surface; find rectangular (not necessarily linear) coordinate system X' such that equation has canonical form, that is find matrix of isometry P and vector T such that $X' = P^{\top}X + T$; draw surfaces in this coordinate system; find position of the surface in standard coordinate system using sentences like "the symmetry axis of hyperboloid is line $X = (1, 2, 3)^{\top} + t(3, 4, 5)^{\top}$ ". (a) $x^2 + 2xy + y^2 - z^2 + 2z - 1 = 0$, (b) $4x^2 - y^2 - z^2 + 32x - 12z + 44 = 0$,

 - (c) $z^2 = 2xy$,

 - (c) $z^{2} 2xy$, (d) 2xy + 2yz + 2zx + 2x + 2y + 2z + 1 = 0, (e) $3x^{2} + 3y^{2} + 3z^{2} 2xy 2yz 2zx 2x 2y 2z 1 = 0$, (f) $4x^{2} + y^{2} + 4z^{2} 4xy 8xz + 4yz 28x + 2y + 16z + 45 = 0$, (g) $4x^{2} + 4y^{2} 8z^{2} 10xy + 4xz + 4yz 16x 16y + 10z 2 = 0$.
- 11. Give an example that intersection of the cone $x^2 + y^2 z^2 = 0$ and a plane may be an ellipsis, a hyperbole, a parable.