Linear algebra 1R, problem sheet 4

- 1. Prove: M(N+P) = MN + MP, (M+N)P = MP + NP, t(MN) = (tM)N = M(tN), $det(M^{-1}NM) = M(tN)$ $\det(N), \det(tM) = t^2 \det(M), \operatorname{tr}(MN) = \operatorname{tr}(NM), \operatorname{tr}(M+N) = \operatorname{tr}(M) + \operatorname{tr}(N), \operatorname{tr}(M^{-1}NM) = \operatorname{tr}(N)$ (for matrices M, N, P and for $t \in \mathbf{R}$).
- 2. Show that the set of linear transformations of the palne, equipped with the operations of addition and multiplication by scalars satisfies the vector space axioms.
- 3. Determine the values of the parameter c for which the matrix $\begin{pmatrix} 2 & c \\ -c & 1 \end{pmatrix}$ has (a) zero, (b) one, (c) two eigenvalues.

- 4. Find characteristic polynomials, eigenvalues and eigenvectors for the following matrices:
 (a) \$\begin{pmatrix} 2 & 0 \\ 0 & 3 \$\end{pmatrix}\$, (b) \$\begin{pmatrix} 2 & 1 \\ 1 & 1 \$\end{pmatrix}\$, (c) \$\begin{pmatrix} 1 & 2 \\ 0 & 1 \$\end{pmatrix}\$, (d) \$\begin{pmatrix} 0 & -1 \\ 1 & 0 \$\end{pmatrix}\$, (e) \$\begin{pmatrix} 1 & 1 \\ 1 & 1 \$\end{pmatrix}\$, (f) \$\begin{pmatrix} 1 & 2 \\ 3 & 4 \$\end{pmatrix}\$.
 5. Let \$A = \$\begin{pmatrix} 1 & 1 \\ 0 & 1 \$\end{pmatrix}\$. Compute \$A^2\$, \$A^3\$ i \$A^4\$. State the resulting conjecture; prove it by induction.
 6. Show that 5 is the unique eigenvalue of \$\begin{pmatrix} 5 & 0 \\ 0 & 5 \$\end{pmatrix}\$ \$\end{pmatrix}\$ jest 5. Do the same for \$\begin{pmatrix} 5 & 1 \\ 0 & 5 \$\end{pmatrix}\$. Show that one of these matrices is diagonalizable, and the other is not.
- 7. Express $M = \begin{pmatrix} 3 & 0 \\ 4 & 2 \end{pmatrix}$ as PDP^{-1} , where D is diagonal. Use it to compute the sixth power of M.
- 8. Find the matrix of the linear transformation with eigenvectors $\binom{1}{0}$ (corresponding to the eigenvalue $-\frac{1}{2}$), $\binom{1}{1}$ (for eigenvalue 1).
- 9. Give an example of a transformation of the plane that preserves area, changes orientation and has eigenvalue π .
- 10. Which of the following transformations are diagonalizable? For those that do, find their eigenvalues and a basis of eigenvactors. (Hint: Use geometry, not matrices.) (a) R_{θ} , (b) S_{ℓ} (ℓ – a line through O), (c) J_r (dilation with scale r), (d) P_U .
- 11. Find a condition on the numbers a, b, c, d that implies that the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ has two distinct real eigenvalues
- 12. Let $A = PMP^{-1}$. Prove that the characteristic polynomials of A and of M are equal (hint: formulae from excercise 1 may prove helpful). Deduce that if M has two distinct eigenvalues λ , μ , then det(M) = $\lambda \mu$, tr(M) = $\lambda + \mu$. Is it necessary to assume $\lambda \neq \mu$?
- 13. Suppose that a linear transformation E satisfies $E \circ E = E$. What are the possible eigenvalues of E? Could E be different from the identity and from the zero map?
- 14. Show that if $A = PDP^{-1}$ (where D is diagonal), then the columns of P are eigenvectors of A.
- 15. Suppose that $U, W \in \mathbf{R}^2$ are linearly independent and that the matrix A satisfies AU = 5U + 4W, AW = 3U + 2W. Prove that there exists an invertible matrix P, such that $A = P \begin{pmatrix} 5 & 3 \\ 4 & 2 \end{pmatrix} P^{-1}$. Generalize.
- 16. Suppose that A—a linear transformation of the plane—has two distinct eigenvalues λ , μ . Prove that A preserves orientation iff $\lambda \mu > 0$, and A changes orientation iff $\lambda \mu < 0$. Deduce that S_{ℓ} (where ℓ is a line through 0) changes orientation.
- 17. Suppose that $\det(F x \cdot Id)$ has a double root λ , and yet F is not a dilation. Prove that there exist two linearly independent vectors U, W, such that $F(U) = \lambda U$, $F(W) = U + \lambda W$. Does F diagonalize? If not, is there a subsitute for diagonalization? (Hint: problem 16)
- 18. Prove that the following is true: $(\forall A \in M_{2 \times 2}(\mathbf{R}))((\exists \lambda, \mu \in \mathbf{R})(\exists P \in M_{2 \times 2}(\mathbf{R}))(A = P \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} P^{-1}) \iff A \in \mathcal{A}$ $((\exists \lambda \in \mathbf{R})(A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}) \lor (\exists a, b \in \mathbf{R})(a \neq b \land \det(A - aI) = 0 \land \det(A - bI) = 0))).$
- 19. Let $M = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$, and let U be an arbitrary vector. Investigate the rate of growth of $M^n U$ as n goes to infinity. (Prove that there exists a constant C that depends (how?) on U, such that the limit $\lim_{n \to +\infty} \frac{\|\underline{M}^{n} \underline{U}\|}{C^{n}}$ is a positive finite number.)

Seminar material:

- 20. The Fibonacci sequence is defined recursively: $f_0 = 1$, $f_1 = 1$, $f_{n+1} = f_n + f_{n-1}$ for $n \ge 1$. Derive an explicit formula for its *n*th term along the following lines: a) Put $X_n = \binom{f_n}{f_{n+1}}, M = \binom{0}{1}$. Prove $X_0 = \binom{1}{1}, X_{n+1} = MX_n, X_n = M^n X_0$.

 - b) Diagonalize M: find the eigenvalues and the eigenvalues express M as PDP^{-1} with diagonal D.
 - c) Find a formula for M^n ; deduce a formula for f_n .
 - d) What will change if $f_0 = 7$, $f_1 = 3$, $f_{n+1} = f_n + f_{n-1}$ for $n \ge 1$.
- 21. Investigate for what values of a, b the matrix $\binom{0}{b} \binom{1}{a}$ has two distinct eigenvalues. For what values of a, b can you find an explicit formula for the *n*th term of the sequence defined by $f_{n+1} = af_n + bf_{n-1}$ $(n \ge 1)$, with given f_0 and f_1 . Can you cope with the case $f_0 = 0$, $f_1 = 1$, $f_{n+1} = 2f_n - f_{n-1}$?

Old midterm problems:

- 1. Find an explicit formula for the *n*th term of the following sequence: $a_0 = 4$, $a_1 = 1$, $a_{n+1} = -3a_n + 3a_n + 3a_n$ $10a_{n-1}$ for $n \ge 1$.
- 2. Let $A, B, C \in \mathbb{R}^2$. Suppose that ||A + B + C|| = 9. Does it imply that at least one of the vectors A, B, Ca) is not shorter than 3?
 - b) is not longer than 3?
- 3. Let ℓ be the line x = 1, and let $F : \mathbf{R}^2 \to \mathbf{R}^2$ be a linear transformation with the following property: if $p \in \ell$, then $F(p) \in \ell$.
 - a) Prove that $\binom{0}{1}$ is an eigenvector of F.
 - b) Prove that 1 is an eigenvalue of F.
 - c) Suppose additionally that the eigenvalue of F corresponding to $\binom{0}{1}$ is different from 1. Prove that there exists $q \in \ell$ such that F(q) = q.
- 4. What is the largest possible length of the vector A, if $|\langle \begin{pmatrix} 1\\1 \end{pmatrix}, A \rangle| \leq 1$ and $|\langle \begin{pmatrix} 1\\2 \end{pmatrix}, A \rangle| \leq 1$? (Hint: a drawing may help.)
- 5. Let $A = \begin{pmatrix} 100 & \frac{401}{200} \\ 50 & 1 \end{pmatrix}$. Prove that for every $X \in \mathbf{R}^2$

$$\lim_{n \to +\infty} \det(A^n X, A^{n+1} X) = 0.$$