Linear algebra 1R, problem sheet 8

- 1. Write in exponential form: $-1, 1+i, -1-\sqrt{3}i, 7-7i, -5+5\sqrt{3}i, 1+\frac{\sqrt{3}}{2}+\frac{i}{2}$.
- 2. Decompose polynomial P(z) into linear factors over **C**. Also decompose P(z) into linear and irreducible quadratic factors over **R**. Use fact that number a is a root of P(z).

 - (a) $P(z) = z^3 2z^2 5z + 6$, a = -2; (b) $P(z) = z^4 + 2z^3 + 7z^2 18z + 26$, a = -2 + 3i; (c) $P(z) = z^4 3z^3 + 3z^2 3z + 2$, a = i; (d) $P(z) = z^5 + 2z^4 + 2z^3 + 10z^2 + 25z$, a = 1 2i.
- 3. Write down polynomial P(z) with real coefficients such that 1, 3, 2 + i are its roots.
- 4. Write in Jordan form (if needed over **C**): $\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$.
- 5. Decompose polynomial P(z) into linear factors over **C**. Also decompose P(z) into linear and irreducible quadratic factors over **R**.

 - (a) $P(z) = z^6 + 27;$ (b) $P(z) = z^4 + 4z^3 + 4z^2 4z 5;$ (c) $P(z) = z^4 + 4.$
- 6. Let $M \in M_{2 \times 2}(\mathbf{C})$. Prove using Jordan theorem that if $M^{100} = 0$, than $M^2 = 0$.
- 7. Write in Jordan form over \mathbf{C}

$$\begin{pmatrix} 3 & -4 \\ 2 & -1 \end{pmatrix}, \quad \begin{pmatrix} 4 & -1 \\ 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 3 & 1 \\ -1 & 5 \end{pmatrix}.$$

- 8. Compute $\binom{1}{-1} \binom{1}{3}^{50}$.
- 9. Compute $\binom{7-4}{14-8}^{64}$. Think how to minimize calculations.
- 10. Compute $\begin{pmatrix} 2\sqrt{3} & -7\\ 1 & -\sqrt{3} \end{pmatrix}^{1232} \begin{pmatrix} 1\\ 2 \end{pmatrix}$. Think how to minimize calculations.
- 11. Find all $X \in M_{2 \times 2}(\mathbf{R})$ such that $X^2 = \begin{pmatrix} 6 & 2 \\ 3 & 7 \end{pmatrix}$.
- 12. Solve equations: (a) $(z+1)^n (z-1)^n = 0$; (b) $(z+i)^n + (z-i)^n = 0$.
- 13. Prove formula $x^{2n+1} 1 = (x-1)\prod_{k=1}^{n} \left(x^2 2x\cos\frac{2k\pi}{2n+1} + 1\right)$. Find similar formula for $x^{2n} 1$.
- 14. Prove (for $z \neq 1$) formula $1 + z + z^2 + \ldots + z^n = \frac{1-z^{n+1}}{1-z}$. What you get when z is root of 1 of degree n + 1?
- 15. Compute (2+i)(5+i)(8+i). Derive from this the following formula of Strassnitzky:

$$\frac{\pi}{4} = \operatorname{arctg}\frac{1}{2} + \operatorname{arctg}\frac{1}{5} + \operatorname{arctg}\frac{1}{8}.$$