Linear algebra 1R, problem sheet 9

To save space here and in following problem sheets we write $(x, y, z)^{\top}$ instead of $\begin{pmatrix} x \\ y \end{pmatrix}$. We also use

word orthogonal instead of perpendicular.

- 1. Prove that vector product is bilinear and antisymmetric.
- 2. Check via direct calculation:
- (a) $\langle A \times B, C \rangle = \langle B \times C, A \rangle$; (b) $\langle A \times B \rangle \perp A$, $\langle A \times B \rangle \perp B$; (d) $A \times \langle B \times C \rangle + B \times \langle C \times A \rangle + C \times \langle A \times B \rangle = 0$.
- 3. Which of expressions below give a vector, which give a number, and which make no sense (A, B, C are vectors, $\lambda \in \mathbf{R}$):
 - (a) $\langle C \times (\lambda B), A \rangle$; (b) $\langle C, (\lambda B) \rangle \times A$; (c) $A \times (\langle C, B \rangle B)$; (d) $\lambda \langle A, B \rangle$; (e) $\lambda (A \times B)$; (f) $\langle A, B \rangle + A \times B$; (g) $\langle A, B \rangle (A \times B)$.
- 4. Find cosine of the angle between planes 2x + 7y z = 5, -x + y + 3z = 7.
- 5. Find area of parallelograms spanned by pairs of vectors: (a) $(1, -2, 4)^{\top}, (-1, 2, 3)^{\top};$ (b) $(-1, 0, 2)^{\top}, (0, 1, 3)^{\top}.$
- 6. Prove via calculation: $||A \times B|| = ||A|| \cdot ||B|| \cdot \sin(\angle(A, B))$. Hint: square both sides and use formulas $\langle A, B \rangle = ||A|| \cdot ||B|| \cdot \cos(\angle (A, B)), \sin^2 a + \cos^2 a = 1$ to eliminate sine.
- 7. Simplify: (a) $\langle A, A \times C \rangle$; (b) $\langle A \times (B + A \times C), A \rangle$; (c) $\langle A + A \times B, A + B \rangle$; (d) $\langle D \times (A + D), (A \times B) \times (C \times A) \rangle$.
- 8. Check which points below are contained in the plane $X = (1,2,3)^{\top} + t(5,-7,-2)^{\top} + s(-4,3,-1)^{\top}$: $(1,2,3)^{\top}$; $(7,4,2)^{\top}$; $(-3,4,3)^{\top}$; $(-2,3,1)^{\top}$; $(5,6,7)^{\top}$; $(5,-6,7)^{\top}$; $(3,-8,-5)^{\top}$; $(1,\pi,-\pi)^{\top}$; $(9,-2,7)^{\top}$; $(12,3,16)^{\top}$; $(21,-12,13)^{\top}$; $(11,23,34)^{\top}$; $(-3,2,1)^{\top}$; $(-1,1,1)^{\top}$; $(10,0,10)^{\top}$; $(2,2,2)^{\top}$; $(-7,2,5)^{\top}$; $(1, -1, 0)^{\top}; (3, -7, -4)^{\top}; (1, 10, 100)^{\top}.$
- 9. Transform equation of a plane or a line between parametric and nonparametric forms: (a) $X = (0, 0, 1)^{\top} + t(1, 0, 1)^{\top} + s(1, 2, 7)^{\top}$; (b) x + 2y + 3z = 4; (c) $X = (1, 0, 7)^{\top} + t(2, -1, 5)^{\top}$; (d) $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z+5}{-1}$.
- 10. Let $P = (1,2,3)^{\top}$, Π be the plane 4x + y z = 2 and ℓ be the line $\frac{x-1}{2} = \frac{y-3}{7} = \frac{z-(-2)}{3}$. Write down nonparametric equations of
 - (a) the plane containing P and parallel to Π ;
 - (b) the plane containing P and ℓ ;
 - (c) the plane containing P and a line orthogonal to Π ;
 - (d) the line containing P and parallel to ℓ ;
 - (e) the line containing P and parallel to Π and orthogonal to ℓ ;
 - (f) the plane Π' containing ℓ and such that angle between Π and Π' equals angle between Π and ℓ .
- 11. Prove: if A + B + C = 0, then $A \times B = B \times C = C \times A$.
- 12. Find cosine of the angle between the plane y 5z 1 = 0 and the line 3x + 4y = 0, z = 0.
- 13. Write down parametric and nonparametric equations of the line which is intersection of the planes x + y + z = 7 and x + 2y - z = 3.
- 14. Find nonparametric equation of plane containing line $\frac{x-1}{3} = \frac{-1-2y}{4} = \frac{3z+9}{-6}$ and a line orthogonal to the plane -x + 4y - 2z = 100.
- 15. Find equation of plane containing lines $X = (1, 1, 3)^{\top} + t(1, -2, 1)^{\top}, \frac{1-x}{-2} = \frac{2y+2}{-8} = \frac{z+3}{2}$.
- 16. Find equation of plane containing $(2, -1, 3)^{\top}$, $(3, 1, 2)^{\top}$ and parallel to vector $(-3, 1, 4)^{\top}$.
- 17. Let ℓ be a line containing $X = (0,3,0)^{\top} + t(-1,1,2)^{\top}$. Find a line containing $(1,0,1)^{\top}$ and intersecting ℓ at right angle.
- 18. Prove that lines X = A + tB and X = C + tD are contained in a single plane if and only if $\langle A, B \times D \rangle =$ $(C, B \times D)$. Using this condition check if lines $X = (1, 1, 2)^{\top} + t(7, 1, 0)^{\top}, X = (-6, 0, 2)^{\top} + t(1, 0, 1)^{\top}$ are contained in a single plane. If yes find equation of this plane.