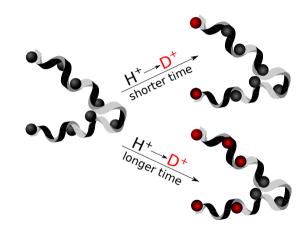
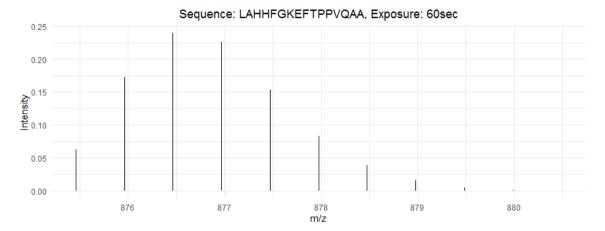

Comparing deuteration curves

Krystyna Grzesiak

June 1, 2021

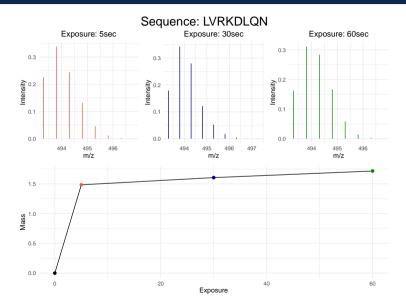

HDX: dynamics measurements of protein structure


mass spectometr

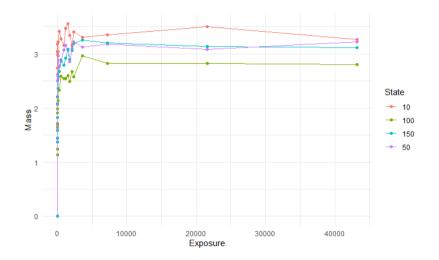
HDX: dynamics measurements of protein structure

- measurement of the mass of peptides coming from proteins incubated in the deuterated water
- the most exposed amide hydrogens tend to be replaced by deuters
- exchange rate is related to the position of the peptide in the structure of protein

Mass spectrum

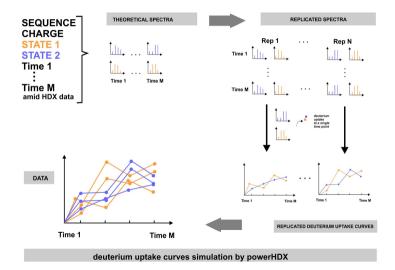


4 / 22

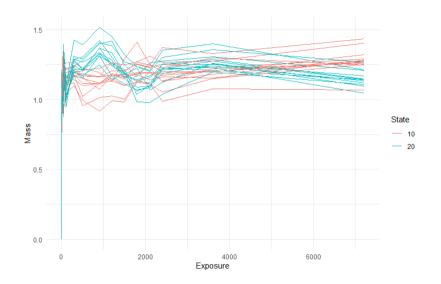

Simulation time

\$SHCLL Unit: 1	milliseconds											
			expr	mir	, 1	la; m	ean me	dian	uq		max	neval
	simulate rcpp(all params[i,									C704		10
												10
	<pre>simulate_markov(all_params[i,</pre>	1.	times) }	50.06764	51.0815	57 77.08	0/1 51.4	6/85 54	.90911	301.	9468	
	IPDTLNQGEF											
Unit: 1	nilliseconds											
			expr	min	la	a me	an med	ian	uq		max ne	eval
	simulate rcpp(all params[i,		times) }	183544.7983	183847-21832	2 184394.139	97 184246-83	311 185043.	75039 185	5778.4	020	10
	simulate markov(all params[i,				46.74509				10634	180.7		10
	simulace_markov(arr_params[r,	1,	cimes) ;	10.0725	10./100	, 00.720	10.52	· · · ·	10034	100.7	220	10
\$HIMED												
Unit: 1	nilliseconds											
			expr	min	lq	mean	median	uq		max n	eval	
	simulate rcpp(all params[i,	1.	times) }	96848.01266	97072.14389	97183.8649	97127.66521	97305.82859	97732.71	1294	10	
	simulate markov(all params[i,				46.53818	46.7617	46.63647	46.81681	47.49		10	
	printing (arr_paramotr,	.,	0111100, 1	10100001	10100010	101/01/	10100017	10101001				
STRTYF	OUP											
Unit: 1	milliseconds											
			expr	min	lq	mean				max n		
	<pre>simulate_rcpp(all_params[i,</pre>],	times) }	25116.72428	25201.31742	25311.59897	25285.08453	25448.4792	25582.61	1801	10	
	simulate markov(all params[i,	1.	times) }	34.78354	34.84255	34.90605	34.89878	34.9277	35.12	2618	10	
SCINUTIN	CVLAHHFGKEFTPPV											
	milliseconds											
Unit: 1	alliseconds											
			expr	min	lq	mean					neval	
	<pre>simulate_rcpp(all_params[i,</pre>									55223	10	
	simulate markov(all params[i,],	times) }	30.53725	30.63669	30.68082	30.67195	30.6952	6 30.9	96322	10	
SKSAVT												
	milliseconds											
onre. i				min	1.~		median		_		-1	
			expr		lq	mean		uq		ax nev		
	<pre>simulate_rcpp(all_params[i,</pre>										10	
	simulate_markov(all_params[i,],	times) }	37.2085	37.38842	39.26699	37.41472	39.53007	46.16	53	10	

Mass spectrum


Differences in deuteration levels

powerHDX package


- spectra
- noisy spectra
- noisy curves
- power simulation

powerHDX package

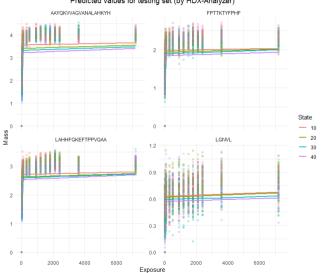
	Sequence	Rep	State	Exposure	Mass	Charge	Experimental_state
1	PPAQHI	1	10	0.00	0.00	1	A
2	PPAQHI	1	10	0.00	0.00	2	А
3	PPAQHI	1	10	0.00	0.00	3	A
÷	:	÷	÷		÷	:	:
502	PPAQHI	4	20	43200.00	1.10	1	В
503	PPAQHI	4	20	43200.00	1.18	2	В
504	PPAQHI	4	20	43200.00	1.01	3	В

Data

What are we looking for?

a test based on semiparametric regression such that it can determine statistical significance of differences in deuteration levels between states

In general, differences in deuteration levels can be measured using two approaches:


- 1. based on linear models
 - single time-point analysis with time-point selection or multiple testing correction,
 - multivariate analysis with time as a variable,
- 2. based on geometrical properties of the curves
 - analysis of the area under the curve,
 - functional data analysis (functional ANOVA).

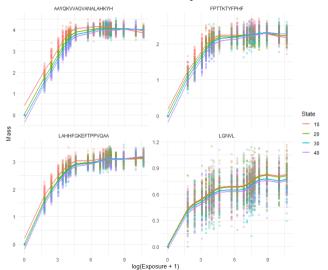
One of models was introduced in *HDX-Analyzer: a novel package for statistical analysis of protein structure dynamics* (2011) and included an interaction term for state and time. It is defined by the following formula

$$Y = \beta_T X_{Time} + \beta_G X_{Group} + \beta_{TG} X_{Time} \times X_{Group},$$

where Y denotes deuteration level, X_{Time} denotes exposure duration and X_{Group} is a protein state indicator.

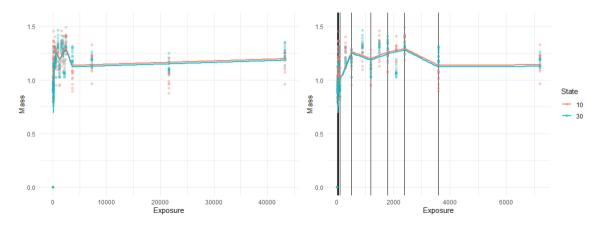
HDX-Analyzer fit

Predicted values for testing set (by HDX-Analyzer)

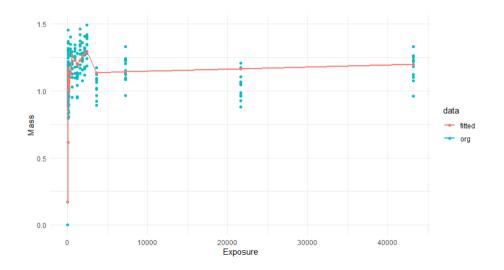

Generalized additive model for response Y (along with link function g) and predictors x_1, \ldots, x_p can be represented by following formula

$$g(\mathbb{E}(Y)) = \beta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p),$$

where f_1, \ldots, f_p are some smooth functions. An example basis for space of smooth functions is K-spline:


$$f(x_i) = \beta_0 + x_i\beta_1 + \sum_{k=1}^K u_k(x_i - \kappa_k)_+.$$

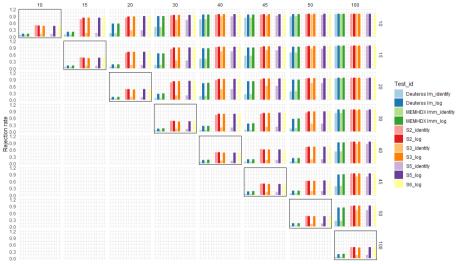
Example semiparametric fit



Predicted curves for testing set

Regression splines

Regression splines



HDX - Analyzer:

```
model = lm(Mass ~ Exposure*State, data = data)
model_reduced = lm(Mass ~ Exposure, data = data)
result = anova(model, model_reduced)
```

Rejection rate

Rejection rate in pairwise testing

- Simple ftting of subject-specific curves for longitudinal data Durban, Harezlak, Wand Carroll (Stat in Med, 2005)
- HaDeX: an R package and web-server for analysis of data from hydrogen-deuterium exchange mass spectrometry experiments Weronika Puchała, Michał Burdukiewicz, Michał Kistowski, Katarzyna A Dabrowska, Aleksandra E Badaczewska-Dawid, Dominik Cysewski, Michał Dadlez (Bioinformatics, 2020)
- HDX-Analyzer: a novel package for statistical analysis of protein structure dynamics Sanmin Liu, Lantao Liu, Ugur Uzuner, Xin Zhou, Manxi Gu, Weibing Shi, Yixiang Zhang, Susie Y Dai & Joshua S Yuan (Bioinformatics, 2011)