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generalizations of linear decision boundaries,

optimal separating hyperplanes for classes linearly
separable,

nonlinear boundaries for nonseparable classes,

generalizations of Fisher’s linear discriminant analysis.
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The support vector classifier

Training data consists of N pairs
(x1, y1), (x2, y2), . . . , (xN , yN ) with xi ∈ Rp and yi ∈ {−1, 1}.
Define a hyperplane by{

x : f(x) = xTβ + β0 = 0
}
,

where β is a unit vector: ∥β∥ = 1. A classification rule induced
by f(x) is

G(x) = sign
[
xTβ + β0

]
.
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The support vector classifier

Since the classes are separable, we can find a function f(x)
with

∀i yif(xi) > 0.

Hence we are able to find the hyperplane that creates the
biggest margin between the training points. The optimization
problem

max
β,β0,∥β∥=1

M

s.t. yi(x
T
i β + β0) ≥ M, i = 1, . . . , N,

captures this concept.
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The support vector classifier

Figure: Support vector classifiers. The left panel shows the separable
case. The right panel shows the nonseparable (overlap) case. Source:
The elements of statistical learning, T Hastie, R Tibshirani, JH
Friedman, fig. 12.1.
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The support vector classifier

This problem can abe more conveniently rephrased as

min
β,β0

∥β∥

s.t. yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N.

Note that M = 1
∥β∥ . This is a convex optimization problem.
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The support vector classifier

Suppose now that the classes overlap in feature space. Define
the slack variables ξ − (ξ1, ξ2, . . . , ξN ). There are two natural
ways to modify the constraint:

yi(x
T
i β + β0) ≥ M − ξi,

or

yi(x
T
i β + β0) ≥ M(1− ξi),

where ∀i ξi ≥ 0,
∑N

i=1 ξi ≤ const.
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The support vector classifier

The value ξi in the constraint yi(x
T
i β + β0) ≥ M(1− ξi)

is the proportional amount by which the prediction is on
the wrong side of its margin,

misclassifications occur when ξi > 1,

by bounding
∑N

i=1 ξi, we bound the total proportional
amount of misclassifications,

so when
∑N

i=1 ξi < K, the total number of training
misclassifications are bounded at K.
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The support vector classifier

Again, we can define M = 1
∥β∥ , and write in the equivalent

form

min
β,β0

∥β∥

s.t. yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , N,

and ξi ≥ 0,

N∑
i=1

ξi ≤ const.

This is the usual way the support vector classifier is defined for
the nonseparable case.
By nature of this criterion, points well inside their class do not
play a big role.
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The support vector classifier

Computationally it is convenient to re-express in the equivalent
form

min
β,β0

1

2
∥β∥2 + C

N∑
i=1

ξi

s.t. yi(x
T
i β + β0) ≥ 1− ξi, ξi ≥ 0 ∀i,

where the “cost” parameter C replaces the bounding constant.
The separable case corresponds to C = ∞.
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The support vector classifier

The Lagrange (primal) function is

Lp =
1

2
∥β∥2 + C

N∑
i=1

ξi −
N∑
i=1

αi

[
yi
(
xTi β + β0

)
− (1− ξi)

]
−

N∑
i=1

µiξi,

which we minimize w.r.t β, β0 and ξi.
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The support vector classifier

Setting the respective derivatives to zero, we get

β =

N∑
i=1

αiyixi,

0 =

N∑
i=1

αiyi,

αi = C − µi,∀i,

as well as the positivity constraints αi, µi, ξi ≥ 0, ∀i.
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The support vector classifier

By substituting into, we obtain the Lagrangian (Wolfe) dual
objective function

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj ,

which gives a lower bound on the objective function.
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The support vector classifier

We maximize LD s.t. 0 ≤ αi ≤ C and
∑N

i=1 αiyi = 0.

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj ,

In addition to equations obtained from derivatives, the
Karush-Kuhn-Tucker conditions include the constraints

αi

[
yi
(
xTi β + β0

)
− (1− ξi)

]
= 0,

µiξi = 0,

αi

[
yi
(
xTi β + β0

)
− (1− ξi)

]
≥ 0,

Together these equations uniquely characterize the solution to
the primal and dual problem.
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The support vector classifier

We see that the solution for β has the form

β̂ =

N∑
i=1

α̂iyixi,

with nonzero coefficients α̂i only for those observations i for
which the constraints are exactly met. These observations are
called the support vectors, since β̂ is represented in terms of
them alone.
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The support vector classifier

Maximizing the dual LD is a simpler convex quadratic
programming problem than the primal LP , and can be solved
with standard techniques.

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj ,

Lp =
1

2
∥β∥2 + C

N∑
i=1

ξi −
N∑
i=1

αi

[
yi
(
xTi β + β0

)
− (1− ξi)

]
−

N∑
i=1

µiξi,
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The support vector classifier

Figure: The linear support vector boundary for the mixture data
example with two overlapping classes, for two different values of C.
The broken purple curve in the background is the Bayes decision
boundary. Source: The elements of statistical learning, T Hastie, R
Tibshirani, JH Friedman, fig. 12.2.
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Support vector machines and kernels

enlarge the feature space using basis expansions,

select basis functions hm(x), m = 1, . . . ,M ,

fit the SV classifier using input features
h(xi) = (h1(xi), . . . , hM (xi)), i = 1, . . . , N ,

produce the (nonlinear) function f̂(x) = h(x)T β̂ + β̂0,

classifier is Ĝ(x) = sign(f̂(x)),

the SVM classifier is an extension of this idea,

dimension of the enlarged space is allowed to get very
large.
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Computing the SVM for classification

We can represent the optimization problem and its solution in a
special way that only involves the input features via inner
products,

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj⟨h(xi), h(xj)⟩,

and the solution function f(x) can be written:

f(x) = h(x)Tβ + β0 =

N∑
i=1

αiyi⟨h(x), h(xi)⟩+ β0.

As before, given αi, β0 can be determined by solving
yif(xi) = 1.
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Computing the SVM for classification

So both of these equations involve h(x) only through inner
products and require only knowledge of the kernel function

K(x, x′) = ⟨h(x), h(x′)⟩.

K should be a symmetric positive (semi-) definite function.
Three popular choices for K in the SVM literature are

dth-degree polynomial: K(x, x′) = (1 + ⟨x, x′⟩)d,
Radial basis: K(x, x′) = exp(−γ∥x− x′∥2),
Neural network K(x, x′) = tanh(κ1⟨x, x′⟩+ κ2).
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Computing the SVM for classification

Consider for example a feature space with two inputs X1 and
X2, and a polynomial kernel of degree 2. Then

K(X,X ′) =
(
1 + ⟨X,X ′⟩

)2
=

=
(
1 +X1X

′
1 +X2X

′
2

)2
=

= 1 + 2X1X
′
1 + 2X2X

′
2 +

(
X1X

′
1

)2
+
(
X2X

′
2

)2
+

+ 2X1X
′
1X2X

′
2.
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Computing the SVM for classification

Then M = 6, and if we choose h1(X) = 1, h2(X) =
√
2X1,

h3(X) =
√
2X2, h4(X) = X2

1 , h5(X) = X2
2 ,

h6(X) =
√
2X1X2, then

K(X,X ′) = ⟨h(X), h(X ′)⟩.

and we see that the solution can be written

f̂(x) =

N∑
i=1

α̂iyiK(x, xi) + β̂0.
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Figure: Two nonlinear SVMs for the mixture data. The left plot uses
a 4th degree polynomial kernel, the right a radial basis kernel (with
γ = 1). Source: The elements of statistical learning, T Hastie, R
Tibshirani, JH Friedman, fig. 12.3.
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The SVM as a penalization model

With f(x) = h(x)Tβ + β0, consider the optimization problem

min
β,β0

N∑
i=1

[1− yif(xi)]+ +
λ

2
∥β∥2

where the subscript “+” indicates positive part. This has the
form loss + penalty. When λ = 1/C then the solution is the
same as in the beginning.
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The SVM as a penalization model

Figure: The support vector loss function (hinge loss), compared to
the negative log-likelihood loss (binomial deviance) for logistic
regression, squared-error loss, and a “Huberized” version of the
squared hinge loss. Source: The elements of statistical learning, T
Hastie, R Tibshirani, JH Friedman, fig. 12.4.
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Support vector machines for regression

We first discuss the linear regression model

f(x) = xTβ + β0,

and then handle nonlinear generalizations. To estimate β, we
consider minimization of

H(β, β0) =

N∑
i=1

V (yi − f(xi)) +
λ

2
∥β∥2.

where V is error measure.
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Support vector machines for regression

ε-insensitive error measure

Vε(r) =

{
0 if |r| < ε,

|r| − ε otherwise,

error measure used in robust regression in statistics

VH(r) =

{
r2/2, if |r| ≤ c,

c|r| − c2/2, |r| > c,
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Support vector machines for regression

Figure: The left panel shows the ε-insensitive error function used by
the support vector regression machine. The right panel shows the
error function used in Huber’s robust regression (blue curve). Beyond
|c|, the function changes from quadratic to linear. Source: The
elements of statistical learning, T Hastie, R Tibshirani, JH Friedman,
fig. 12.8.
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Support vector machines for regression

If β̂, β̂0 are the minimizers of H, the solution function can be
shown to have the form

β̂ =

N∑
i=1

(α̂∗
i − α̂i)xi,

f̂(x) =

N∑
i=1

(α̂∗
i − α̂i)⟨x, xi⟩+ β0,
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Support vector machines for regression

Where α̂∗
i , α̂i are positive and solve the quadratic programming

problem

min
α̂∗
i ,α̂i

ε

N∑
i=1

(α̂∗
i + α̂i)−

N∑
i=1

yi(α̂
∗
i − α̂i)+

+
1

2

N∑
i=1,j=1

(α̂∗
i − α̂i)(α̂

∗
j − α̂j)⟨xi, xj⟩

subject to the constraints

0 ≤ αi, α
∗
i ≤ 1/λ,

N∑
i=1

(α∗
i − αi) = 0

α∗
iαi = 0.
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Regression and kernels

Suppose we consider approximation of the regression function
in terms of a set of basis functions {hm(x)} ,m = 1, 2, . . . ,M :

f(x) =

M∑
m=1

βmhm(x) + β0.

To estimate β and β0 we minimize

H(β, β0) =

N∑
i=1

V (yi − f(xi)) +
λ

2

M∑
m=1

β2
m.

for some general error measure V (r).
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Regression and kernels

For any choice of V (r), the solution
f̂(x) =

∑M
m=1 β̂mhm(x) + β̂0 has the form

f̂(x) =

N∑
i=1

α̂iK(x, xi)

with K(x, y) =
∑M

m=1 hm(x)hm(y).
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Regression and kernels

Let’s work out the case V (r) = r2. Let H ∈ RN×M be basis
matrix with imth element hm(xi), and suppose that M > N is
large. We assume that β0 = 0, or that the constant is absorbed
in h. Estimate β by minimizing the penalized least squares
criterion

H(β) = (y −Hβ)T (y −Hβ) + λ∥β∥2.

The solution is
ŷ = Hβ̂

with β̂ determined by

−HT (y −Hβ) + λβ̂ = 0.
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Regression and kernels

We need to evaluate the M ×M matrix of inner products in the
transformed space. However, we can premultiply by H to give

Hβ̂ = (HHT + λI)−1HHTy.

The N ×N matrix HHT consists of inner products between
pairs of observations i, j. The evaluation of an inner product
kernel

{
HHT

}
i,j

= K(xi, xj).
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Regression and kernels

The predicted values at an arbitrary x satisfy

f̂(x) = h(x)T β̂ =

N∑
i=1

α̂iK(x, xi),

where α̂ = (HHT + λI)−1y. As in the support vector machine,
we need not specify or evaluate the large set of functions
h1(x), h2(x), . . . , hM (x).
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Thank you for your attention.
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