Kernel smoothing

B.Chmiel

Introdution

1-dim kerne

regression

Local polynomia

Local

regression

local regression

Kernel width

Kernel density

Computation

Kernel smoothing methods

Chmiela Bartosz

University of Wrocław

28.03.2022

Contents

Kernel smoothing

Introdution

- One-dimensional kernel smoothers
 - Local linear regression
 - Local polynomial regression
- 3 Local regression in \mathbb{R}^p
- 4 Structured local regression models in \mathbb{R}^p
- 5 Selecting the width of the kernel
- 6 Kernel density estimation and classification
 - Naive Bayes classifier
- Computational considerations

Introdution

Kernel smoothing

B.Chmiel

Introdution

1-dim kernel smoothers Local linear regression Local polynomial regression

Local regression

Structure local regression

Kernel width

Kernel density

- Class of regression techniques,
- flexible in estimating the regression function f(X),
- fit simple model separately at each point,
- use only only observations close to the point,
- lacksquare estimated function $\hat{f}(X)$ is smooth,
- weighting function (kernel) $K_{\lambda}(x_0, x_i)$,
- little or no training needed.

Kernel smoothing

B.Chmiel

Introdution

1-dim kernel smoothers

Local linear regression Local polynomia regression

Local regressio

Structured local regression

Kernel width

Kernel density

Computation

Let $x_i \in \mathbb{R}^p$ be the training sample and $y_i \in \mathbb{R}$ response associated with it.

k-nearest-neighbor average:

$$\hat{f}(x) = \text{Ave}(y_i|x_i \in N_k(x)),$$

as and estimate of the regression function E(Y|X=x), where $N_k(x)$ is the set of k points nearest to x in squared distance.

Kernel smoothing

B.Chmiel

Introdution

1-dim kernel smoothers

Local linear regression Local polynomia regression

Local regressio

Structure local regression

Kernel width

Kernel density

Figure: pairs x_i, y_i are generated at random from the blue curve with Gaussian errors: $Y = \sin(4X) + \varepsilon$, $X \sim U[0,1], \varepsilon \sim N(0,1/3)$. Source: The elements of statistical learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.1.

Kernel smoothing

B.Chmiela

Introdution

1-dim kernel smoothers

regression

Local polynomia

Local regression

Structured local regression

Kernel width

Kernel density

Computation

Nadaraya-Watson kernel-weighted average

$$\hat{f}(x_0) = \frac{\sum_{i=1}^{N} K_{\lambda}(x_0, x_i) y_i}{\sum_{i=1}^{N} K_{\lambda}(x_0, x_i)}$$

with the Epanechnikov quadratic kernel

$$K_{\lambda}(x_0, x) = D\left(\frac{|x - x_0|}{\lambda}\right), \quad D(t) = \begin{cases} \frac{3}{4}(1 - t^2), & |t| \le 1\\ 0, & \text{otherwise} \end{cases}$$

Kernel smoothing

B.Chmiel

Introdutio

1-dim kernel smoothers

Local linear regression Local polynomial regression

Local regression

Structured local regression

Kernel width

Kernel density

Computation

In general, we can use a width function $h_{\lambda}(x_0)$:

- k-nearest-neighbors: $h_{\lambda}(x_0)=|x_0-x_{[k]}|$ where $x_{[k]}$ is the kth closest x_i to x_0 ,
- Nadaraya-Watson: $h_{\lambda}(x_0) = \lambda$,

then we have

$$K_{\lambda}(x_0, x) = D\left(\frac{|x - x_0|}{h_{\lambda}(x_0)}\right).$$

Kernel smoothing

B.Chmiel

Introdutio

1-dim kernel smoothers

Local linear regression Local polynomia regression

Local regression

Structure local regression

Kernel width

Kernel density

Computation

In practice one has to attend to:

- The smoothing parameter λ , which determines the width of the local neighborhood,
- metric window widths,
- \blacksquare issues with ties in x_i ,
- boundary issues.

Kernel smoothing

B.Chmiela

Introdution

1-dim kerne smoothers Local linear regression Local polynomial

Local regressio

Structure local regression

Kernel widt

Kernel density

Figure: The locally weighted average has bias problems at or near the boundaries of the domain. Source: *The elements of statistical learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.3.*

Kernel smoothing

B.Chmiel

Introdutio

smoothers
Local linear
regression
Local polynomia

Local regression

Structured local regression

Kernel widtl

Kernel density

Computation

Locally weighted regression solves a separate weighted least squares problem at each target point x_0 :

$$\min_{\alpha(x_0),\beta(x_0)} \sum_{i=1}^{N} K_{\lambda}(x_0, x_i) [y_i - \alpha(x_0) - \beta(x_0)x_i]^2.$$

The estimate is then:

$$\hat{f}(x_0) = \hat{\alpha}(x_0) + \hat{\beta}(x_0)x_0$$

Kernel smoothing

B.Chmiel

Introdutio

1-dim kerne smoothers Local linear regression Local polynomial

Local regression

Structured local regression

Kernel width

Kernel density

Computation

Let $b(x)^T=(1,x)$, $\mathbf{B}\in\mathbb{R}^{N\times 2}$ with ith row $b(x_i)^T$ and $\mathbf{W}(x_0)\in\mathbb{R}^{N\times N}$ diagonal matrix with ith diagonal element $K_\lambda(x_0,x_i)$, then

$$\hat{f}(x_0) = b(x_0)^T \left(\mathbf{B}^T \mathbf{W}(x_0) \mathbf{B} \right)^{-1} \mathbf{B}^T \mathbf{W}(x_0) \mathbf{y}$$
$$= \sum_{i=1}^N l_i(x_0) y_i.$$

These weights $l_i(x_0)$ combine the weighting kernel $K_{\lambda}(x_0, x_i)$ and the least squares operations, and are sometimes referred to as the *equivalent kernel*.

Kernel smoothing

B.Chmiela

Introdution

1-dim kernel smoothers Local linear regression Local polynomial

Local regressio

Structure local regression

Kernel widt

Kernel density

Figure: The green points show the equivalent kernel $l_i(x_0)$ for local regression. Source: The elements of statistical learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.4.

Kernel smoothing

B.Chmiela

Introdutio

1-dim kernel smoothers Local linear

Local polynomial regression

Local regressio

Structured local regression

Kernel widtl

Kernel density

Computation

We can fit local polynomial fits of any degree d,

$$\min_{\alpha(x_0), \beta(x_0), j=1, \dots, d} \sum_{i=1}^{N} K_{\lambda}(x_0, x_i) \left[y_i - \alpha(x_0) - \sum_{j=1}^{d} \beta_j(x_0) x_i^j \right]^2.$$

with solution:

$$\hat{f}(x_0) = \hat{\alpha}(x_0) + \sum_{j=1}^d \hat{\beta}_j(x_0) x_i^j$$

Kernel smoothing

B.Chmiel

Introdution

1-dim kerne smoothers Local linear regression

Local polynomial regression

regressio

Structure local regression

Kernel widt

Kernel density

Naive Bayes classifie

Computa

Figure: Local linear fits exhibit bias in regions of curvature of the true function. Local quadratic fits tend to eliminate this bias. Source: The elements of statistical learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.5.

Kernel smoothing

B.Chmiela

Introdutio

smoothers
Local linear
regression
Local polynomial

Local regression

Structured local regression

Kernel width

Kernel density

Computation

Assuming the model:

$$y_i = f(x_i) + \varepsilon_i,$$

with ε_i i.i.d with mean 0 and variance σ^2 , then

$$Var(\hat{f}(x_0)) = \sigma^2 ||l(x_0)||^2,$$

where $l(x_0)$ is the vector of equivalent kernel weights at x_0 . It can be shown that $||l(x_0)||$ increases with d and so there is a bias-variance tradeoff in selecting the polynomial degree.

Kernel smoothing

B.Chmiela

Introdution

1-dim kernel smoothers Local linear regression

Local polynomial regression

Local

Structure local

Kernel widtl

Kernel density

Figure: The variances functions $||l(x_0)||^2$ for local constant, linear and quadratic regression, for a metric bandwidth ($\lambda=0.2$) tri-cube kernel. Source: The elements of statistical learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.6.

Kernel smoothing

B.Chmiel

Introdutio

smoothers
Local linear
regression
Local polynomial

Local regression

Structured local regression

Kernel width

Kernel density

- Local linear fits can help bias dramatically at the boundaries at a modest cost in variance,
- Local quadratic fits do little at the boundaries for bias, but increase the variance a lot,
- Local quadratic fits tend to be most helpful in reducing bias due to curvature in the interior of the domain.

Kernel smoothing

B.Chmiel

Introdutio

smoothers
Local linear
regression
Local polynomia

Local regression

Structured local regression

Kernel width

Kernel density

Computation

Let b(X) be a vector of polynomial terms in X of maximum degree d. For example:

- with d=0 we get b(X)=1,
- with d = 1 and p = 2 we get $b(X) = (1, X_1, X_2)$,
- with d = 2 we get $b(X) = (1, X_1, X_2, X_1^2, X_2^2)$.

Kernel smoothing

B.Chmiela

Introdution

smoothers

Local linear regression

Local polynomial

Local regression

Structured local regression

Kernel width

Kernel density

Computation

At each $x_0 \in \mathbb{R}^p$ solve

$$\min_{\beta(x_0)} \sum_{i=1}^{N} K_{\lambda}(x_0, x_i) (y_i - b(x_i)^T \beta(x_0))^2$$

to produce fit

$$\hat{f}(x_0) = b(x_i)^T \hat{\beta}(x_0).$$

Kernel smoothing

B.Chmiel

Introdutio

1-dim kernel smoothers Local linear regression Local polynomial

Local regression

Structured local regression

Kernel width

Kernel density

Computation

Typically the kernel will be a radial function, such as the radial Epanechnikov or tri-cube kernel with Euclidean norm.

$$K_{\lambda}(x_0, x) = D\left(\frac{\|x - x_0\|}{\lambda}\right).$$

Since the Euclidean norm depends on the units in each coordinate, it makes most sense to standardize each predictor.

Introdution

1-dim kerne smoothers Local linear regression Local polynomia regression

Local regression

Structure local regression

Kernel widt

Kernel density

Naive Bayes classifier

Figure: The left panel shows three-dimensional data, where the response is the velocity measurements on a galaxy, and the two predictors record positions on the celestial sphere. Source: *The elements of statistical learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.8.*

Kernel smoothing

B.Chmiela

Introdutio

1-dim kerne smoothers Local linear regression Local polynomia regression

Local regression

Structured local regression

Kernel width

Kernel density

Computation

A more general approach is to use a positive semidefinite matrix ${\bf A}$ to weigh the different coordinates:

$$K_{\lambda,\mathbf{A}} = D\left(\frac{(x-x_0)^T \mathbf{A}(x-x_0)}{\lambda}\right).$$

Kernel smoothing

B.Chmiel

Introdutio

1-dim kernel smoothers Local linear regression Local polynomial

Local regressio

Structured local regression

Kernel width

Kernel density

Computation

We are trying to fit a regression function $E(Y|X) = f(X_1, X_2, \dots, X_p)$ in \mathbb{R}^p , in which every level of interaction is potentially present. It is natural to consider (ANOVA) decompositions of the form

$$f(X_1, X_2, \dots, X_p) = \alpha + \sum_{j} g_j(X_j) + \sum_{k < l} g_{kl}(X_k, X_l) + \dots$$

and then introduce structure by eliminating some of the higher-order terms.

Kernel smoothing

B.Chmiel

Introdutio

1-dim kerne smoothers Local linear regression Local polynomia regression

Local regressio

Structured local regression

Kernel width

Kernel density

Computation

We divide the p predictors in X into a set X_1, \ldots, X_q with q < p, and the remainder of the variables we collect in the vector Z. Then assume the conditionally linear model

$$f(X) = \alpha(Z) + \beta_1(Z)X_1 + \dots + \beta_q(Z)X_q.$$

For given Z, this is a linear model, but each of the coefficients can vary with Z.

Kernel smoothing

B.Chmiela

Introdutio

smoothers
Local linear
regression

Local regression

Structured

local regression

Kernel width

Kernel density

Computation

Fit such a model by locally weighted least squares:

$$\min_{\alpha(z_0),\beta(z_0)} \sum_{i=1}^{N} K_{\lambda}(z_0,z_i) [y_i - \alpha(z_0) - x_{1i}\beta_1(z_0) - \dots + x_{qi}\beta_q(z_0)]^2.$$

Introdutio

1-dim kerne smoothers Local linear regression Local polynomial regression

Local regression

Structured local regression

Kernel widt

Kernel density

Naive Bayes classifier

Figure: In each panel the aorta diameter is modeled as a linear function of age. The coefficients of this model vary with gender and depth down the aorta. Source: *The elements of statistical learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.10.*

Selecting the width of the kernel

Kernel smoothing

B.Chmiel

Introdutio

1-dim kerne smoothers Local linear regression Local polynomia

Local regression

Structured local regression

Kernel width

Kernel density

Computation

In each of the kernels K_{λ} , λ is a parameter that controls its width:

- For the Epanechnikov or tri-cube kernel with metric width, λ is the radius of the support region,
- for the Gaussian kernel, λ is the standard deviation.
- λ is the number k of nearest neighbors in k-nearest neighborhoods, often expressed as a fraction or span k/N of the total training sample.

Selecting the width of the kernel

Kernel smoothing

B.Chmiel

Introdutio

1-dim kerne smoothers Local linear regression Local polynomia

Local regressio

Structured local regression

Kernel width

Kernel density

Computation

There is a natural bias-variance tradeoff as we change the width of the averaging window, which is most explicit for local averages:

- If the window is narrow, $\hat{f}(x_0)$ is an average of a small number of y_i close to x_0 , and its variance will be relatively large close to that of an individual y_i ,
- if the window is wide, the variance of $\hat{f}(x_0)$ will be small relative to the variance of any y_i , because of the effects of averaging.

Kernel smoothing

B.Chmiela

Introdutio

1-dim kerne smoothers Local linear regression Local polynomia regression

Local regression

Structured local regression

Kernel widtl

Kernel density

Computation

Suppose we have a random sample x_1, \ldots, x_N drawn from probability density $f_X(x)$ and we wish to estimate $f_X(x_0)$. A natural local estimate has the form:

$$\hat{f}(x_0) = \frac{\#x_i \in \mathcal{N}(x_0)}{N\lambda},$$

where $\mathcal{N}(x_0)$ is a small metric neighborhood around x_0 of width λ . This estimate is "bumpy" so the smooth Parzen estimate is preferred

$$\hat{f}(x_0) = \frac{1}{N\lambda} \sum_{i=1}^{N} K_{\lambda}(x_0, x_i)$$

Kernel smoothing

B.Chmiel

Introdutio

1-dim kerne smoothers Local linear regression Local polynomia regression

Local regression

local regression

Kernel width

Kernel density

Computation

With Gaussian kernel

$$K_{\lambda}(x_0, x) = \phi\left(\frac{|x - x_0|}{\lambda}\right) = \phi_{\lambda}(|x - x_0|),$$

the Parzen estimate has form

$$\hat{f}(x_0) = \frac{1}{N} \sum_{i=1}^{N} \phi_{\lambda}(|x - x_0|) = (\hat{F} * \phi_{\lambda})(x).$$

This is the convolution of the sample empirical distribution \hat{F} with ϕ_{λ} .

Kernel smoothing

B.Chmiela

Introdutio

smoothers
Local linear
regression
Local polynomia

Local regression

local regression

Kernel width

Kernel density

Computation

In \mathbb{R}^p the natural generalization of the Gaussian density estimate amounts to using the Gaussian product kernel in

$$\hat{f}(x_0) = \frac{1}{N(2\lambda^2\pi)^{\frac{p}{2}}} \sum_{i=1}^{N} \exp\left(-\frac{1}{2}(\|x_i - x_0\|/\lambda)\right)^2.$$

Kernel smoothing B.Chmiela ntrodution

1-dim kernel smoothers Local linear regression Local polynomial regression

Local regressio

Structure local regression

Kernel width

Kernel density

Figure: A kernel density estimate for systolic blood pressure. The density estimate at each point is the average contribution from each of the kernels at that point. Source: *The elements of statistical learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.13.*

Kernel smoothing

B.Chmiel

Introdutio

1-dim kerne smoothers Local linear regression Local polynomial regression

Local regression

Structured local regression

Kernel width

Kernel density

Computation

Suppose for a J class problem we fit nonparametric density estimates $\hat{f}_j(X), j=1,\ldots,J$, separately in each of the classes, and we also have estimates of the class priors $\hat{\pi}_j$ (usually the sample proportions). Then

$$\hat{P}(G = j | X = x_0) = \frac{\hat{\pi}_j \hat{f}_j(x_0)}{\sum_{k=1}^J \hat{\pi}_k \hat{f}_k(x_0)}.$$

Figure: The left panel shows the two separate density estimates for systolic blood pressure in the CHD versus no-CHD groups, using a Gaussian kernel density estimate in each. The right panel shows the estimated posterior probabilities for CHD. Source: *The elements of statistical learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.14.*

Kernel smoothing

B.Chmiela

Introdution

1-dim kerne smoothers Local linear regression Local polynomial regression

Local regressio

Structure local regression

Kernel widt

Kernel density

Naive Bayes classifier

Kernel smoothing

B.Chmiela

Introdutio

1-dim kerne smoothers Local linear regression Local polynomia

Local regression

Structured local regression

Kernel width

Kernel density

Computation

Figure: The population class densities may have interesting structure (left) that disappears when the posterior probabilities are formed (right). Source: *The elements of statistical learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.15*.

Kernel smoothing

B.Chmiela

Introdutio

smoothers
Local linear
regression
Local polynomia

Local regression

Structured local regression

Kernel width

Kernel density

Computation

We need only to estimate the posterior well near the decision boundary, for two classes, this is the set

$$\left\{ x | P(G=1|X=x) = \frac{1}{2} \right\}.$$

Naive Bayes classifier

Kernel smoothing

B.Chmiel

Introdutio

smoothers
Local linear
regression
Local polynomia

Local regression

Structured local regression

Kernel width

Kernel density

Naive Bayes classifier

Computation

The naive Bayes model assumes that given a class G=j, the features X_k are independent:

$$f_j(X) = \prod_{k=1}^p f_{jk}(X_k).$$

While this assumption is generally not true, it does simplify the estimation dramatically.

Naive Bayes classifier

Kernel smoothing

B.Chmiel

Introdutio

1-dim kerne smoothers Local linear regression Local polynomia regression

Local regression

Structured local regression

Kernel width

Kernel density

Naive Bayes classifier

- lacktriangle The individual class-conditional marginal densities f_{jk} can each be estimated separately using one-dimensional kernel density estimates,
- if a component X_j of X is discrete, then an appropriate histogram estimate can be used.

Computational considerations

Kernel smoothing

B.Chmiel

Introdutio

smoothers
Local linear
regression
Local polynomial

Local regression

Structured local regression

Kernel width

Kernel density

- memory-based methods,
- fitting is done at evaluation or prediction time,
- for many real-time applications, this can make this class of methods infeasible.

Computational considerations

Kernel smoothing

B.Chmiel

Introdutio

1-dim kernel smoothers Local linear regression Local polynomial regression

Local regression

Structured local regression

Kernel width

Kernel density

- cost to fit single observation x_0 is O(N),
- the smoothing parameter λ for kernel methods are typically determined using cross-validation, at a cost of $O(N^2)$,
- implementations of local regression, such as the loess function in R use triangulation schemes to reduce the computations,
- lacktriangleright it computes the fit exactly at M carefully chosen locations at a cost of O(NM),
- then use blending techniques to interpolate the fit elsewhere (O(M)) per evaluation).

Kernel smoothing

B.Chmiela

Introdution

1-dim kerne smoothers

Local linear regression Local polynomial

Local regression

Structured local

Kornal width

Kernel density

Computation

Thank you for your attention.