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Introdution

Class of regression techniques,
flexible in estimating the regression function f(X),
fit simple model separately at each point,

use only only observations close to the point,
estimated function f(X) is smooth,

weighting function (kernel) K)(xo,x;),

little or no training needed.
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e P Let x; € RP be the training sample and y; € R response
smoothers associated with it.
k-nearest-neighbor average:

f(x) = Ave (yilz; € Ni(x)),

as and estimate of the regression function E(Y|X = x), where
Ny (z) is the set of k points nearest to x in squared distance.



One-dimensional kernel smoothers

Kernel
smoothing

Epanechnikov Kernel

~ Nearest-Neighbor Kernel
B.Chmiela L) - ~ v
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Figure: pairs x;,y; are generated at random from the blue curve with
Gaussian errors: Y =sin(4X) +¢, X ~ UJ0,1],e ~ N(0,1/3).
Source: The elements of statistical learning, T Hastie, R Tibshirani,
JH Friedman, fig. 6.1.
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Nadaraya-Watson kernel-weighted average

1-dim kernel

smoothers N
f(xO) _ Zi:l KA(Z'O? xl)yl
SN K (20, 24)

with the Epanechnikov quadratic kernel

K)\(wo,z) =D <|:c—a:o]> , D(t) = {i(l —£2), It <1

A 0, otherwise



One-dimensional kernel smoothers

Kernel
smoothing

B.Chmiela

In general, we can use a width function h)(zg):

1-dim kernel

smoothers m k-nearest-neighbors: hy(z0) = |zo — o| where zy is the
kth closest z; to xg,

m Nadaraya-Watson: h)(zg) = A,
then we have

Kx(zo,x) =D <|z,\_(af)(;|> .
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1-dim kernel In practice one has to attend to:

smoothers

m The smoothing parameter )\, which determines the width
of the local neighborhood,

m metric window widths,
m issues with ties in z;,

m boundary issues.
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Figure: The locally weighted average has bias problems at or near the
boundaries of the domain. Source: The elements of statistical
learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.3.
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Locally weighted regression solves a separate weighted least
squares problem at each target point xg:

min Ky (zo,x:)[yi — a(zg) — B(x zi%.
azo)ﬁzo)z Ao, i (z0) — B(zo)s]

The estimate is then:
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Local linear regression

Let b(z)” = (1,z), B € RV*2 with ith row b(x;) and
W(z) € RV*N diagonal matrix with ith diagonal element
Ky (xg,x;), then

. -1
f (o) = b(ao)" (B"W(z9)B) B W(ap)y

N

= Z li(azo)yi.

i=1

These weights [;(z9) combine the weighting kernel K (xq, x;)
and the least squares operations, and are sometimes referred to
as the equivalent kernel.
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Figure: The green points show the equivalent kernel ;(x() for local
regression. Source: The elements of statistical learning, T Hastie, R
Tibshirani, JH Friedman, fig. 6.4.
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We can fit local polynomial fits of any degree d,

N d
a(:z:o),ﬁ(gloi)r}j17.”7d;K)\($0,$i) — afxo) z::
with solution:

d
flwo) = a(xo) + Y Bj(wo)a]

J=1
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Figure: Local linear fits exhibit bias in regions of curvature of the true
function. Local quadratic fits tend to eliminate this bias. Source:
The elements of statistical learning, T Hastie, R Tibshirani, JH
Friedman, fig. 6.5.
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Assuming the model:
yi = f(@i) + &,
with ¢; i.i.d with mean 0 and variance o2, then
Var(f(x0)) = o”||1(z0) |,

where () is the vector of equivalent kernel weights at z. It
can be shown that [|I(z)]|| increases with d and so there is a
bias—variance tradeoff in selecting the polynomial degree.
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Figure: The variances functions ||I(z)||? for local constant, linear
and quadratic regression, for a metric bandwidth (A = 0.2) tri-cube
kernel. Source: The elements of statistical learning, T Hastie, R
Tibshirani, JH Friedman, fig. 6.6.
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m Local linear fits can help bias dramatically at the
boundaries at a modest cost in variance,

m Local quadratic fits do little at the boundaries for bias, but
increase the variance a lot,

m Local quadratic fits tend to be most helpful in reducing
bias due to curvature in the interior of the domain.
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Let b(X) be a vector of polynomial terms in X of maximum
degree d. For example:

m with d =0 we get b(X) =1,
Local
i m with d =1 and p =2 we get b(X) = (1, X1, X2),
m with d = 2 we get b(X) = (1, X1, Xo, X7, X2).
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At each z¢ € RP solve

N

ér(lén) Z K (o0, %) (yi — b(l‘i)Tﬂ(l‘o))Q
0 =1

Local
regression

to produce fit

F(wo) = blx:)" B(wo).
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Typically the kernel will be a radial function, such as the radial
Epanechnikov or tri-cube kernel with Euclidean norm.

r— X
Local K)\(x()?x) =D (HOH) .

regression )\

Since the Euclidean norm depends on the units in each
coordinate, it makes most sense to standardize each predictor.
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Figure: The left panel shows three-dimensional data, where the
response is the velocity measurements on a galaxy, and the two
predictors record positions on the celestial sphere. Source: The
elements of statistical learning, T Hastie, R Tibshirani, JH Friedman,

fig. 6.8.
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A more general approach is to use a positive semidefinite
matrix A to weigh the different coordinates:

(z — 20)" Az — x0)> |

K =D
MA ( h\

Structured
local
regression
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We are trying to fit a regression function
E(Y|X) = f(X1,X2,...,X,) in RP, in which every level of
interaction is potentially present. It is natural to consider
(ANOVA) decompositions of the form

Structured
local
regression

FOX1, Xy, Xp) =a+ Y g (X)) + > gu(Xp, Xp) + -+
J k<l

and then introduce structure by eliminating some of the
higher-order terms.
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We divide the p predictors in X into a set Xy,..., X, with
g < p, and the remainder of the variables we collect in the
vector Z. Then assume the conditionally linear model

f(X) =aZ) + PL(Z) X1 + -+ B4(2) X

::;ilession For given Z, this is a linear model, but each of the coefficients
can vary with Z.
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Fit such a model by locally weighted least squares:

K\(20, s e, 2
o Z?I/?(zo) E A(20, 2i) [yi—a(20) — 2181 (20) Zqifq(20)]
Structured

local
regression
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Figure: In each panel the aorta diameter is modeled as a linear
function of age. The coefficients of this model vary with gender and
depth down the aorta. Source: The elements of statistical learning, T
Hastie, R Tibshirani, JH Friedman, fig. 6.10.
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In each of the kernels K, A is a parameter that controls its
width:
m For the Epanechnikov or tri-cube kernel with metric width,
A is the radius of the support region,
m for the Gaussian kernel, X is the standard deviation.
m )\ is the number k of nearest neighbors in k-nearest
neighborhoods, often expressed as a fraction or span k/N
wernel width of the total training sample.
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There is a natural bias-variance tradeoff as we change the
width of the averaging window, which is most explicit for local
averages:

A~

m If the window is narrow, f(zg) is an average of a small
number of y; close to zy , and its variance will be
relatively large close to that of an individual y;,

m if the window is wide, the variance of f(zo) will be small
relative to the variance of any y;, because of the effects of
averaging.

Kernel width
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Suppose we have a random sample x1,...,xn drawn from
probability density fx(z) and we wish to estimate fx(zp).. A
natural local estimate has the form:

oy = FEEIE),

B.Chmiela

where N (zg) is a small metric neighborhood around z of
width A. This estimate is “bumpy” so the smooth Parzen
estimate is preferred

Kernel density

f(zo) = N)\ZKA 0, )
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With Gaussian kernel
|z — x|

K(oca) = 0 (5700 ) = on(lo - o

the Parzen estimate has form
. 1 X .
Fan) = 5 X r(le —aul) = (Fx01) (@),

(EEERERE  This is the convolution of the sample empirical distribution 2
with ¢,.
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In RP the natural generalization of the Gaussian density
estimate amounts to using the Gaussian product kernel in

o) = St Zep(— \xz—xou/»)

Kernel density
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Figure: A kernel density estimate for systolic blood pressure.The
density estimate at each point is the average contribution from each
of the kernels at that point. Source: The elements of statistical
learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.13.
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Suppose for a J class problem we fit nonparametric density
estimates fj(X),j =1,...,J, separately in each of the classes,
and we also have estimates of the class priors 7; (usually the
sample proportions). Then

#; £ (o)

.FA) G == ] X = = T
( / w0 S0y Ak fr (o)

Kernel density
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Figure: The left panel shows the two separate density estimates for
Kernel density systolic blood pressure in the CHD versus no-CHD groups, using a
Gaussian kernel density estimate in each. The right panel shows the
estimated posterior probabilities for CHD. Source: The elements of
statistical learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.14.
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Figure: The population class densities may have interesting structure
(left) that disappears when the posterior probabilities are formed
(right). Source: The elements of statistical learning, T Hastie, R
Kernel density Tibshirani, JH Friedman, fig. 6.15.
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We need only to estimate the posterior well near the decision
boundary, for two classes, this is the set

{x|P(G X =) = ;}

Kernel density
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The naive Bayes model assumes that given a class G = j, the
features X are independent:

£(X) =TT Fir(X0).
k=1

While this assumption is generally not true, it does simplify the
estimation dramatically.
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m The individual class-conditional marginal densities f;; can
each be estimated separately using one-dimensional kernel
density estimates,

m if a component X; of X is discrete, then an appropriate
histogram estimate can be used.
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m memory-based methods,

m fitting is done at evaluation or prediction time,

m for many real-time applications, this can make this class of
methods infeasible.

Computation
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cost to fit single observation zq is O(

),

m the smoothing parameter A for kernel methods are typically
determined using cross-validation, at a cost of O(N?),

m implementations of local regression, such as the loess
function in R use triangulation schemes to reduce the
computations,

m it computes the fit exactly at M carefully chosen locations
at a cost of O(NM),

m then use blending techniques to interpolate the fit
elsewhere (O(M) per evaluation).

Computation
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Thank you for your attention.

Computation
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