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Introdution

Class of regression techniques,

flexible in estimating the regression function f(X),

fit simple model separately at each point,

use only only observations close to the point,

estimated function f̂(X) is smooth,

weighting function (kernel) Kλ(x0, xi),

little or no training needed.
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One-dimensional kernel smoothers

Let xi ∈ Rp be the training sample and yi ∈ R response
associated with it.
k-nearest-neighbor average:

f̂(x) = Ave (yi|xi ∈ Nk(x)) ,

as and estimate of the regression function E(Y |X = x), where
Nk(x) is the set of k points nearest to x in squared distance.
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One-dimensional kernel smoothers

Figure: pairs xi, yi are generated at random from the blue curve with
Gaussian errors: Y = sin(4X) + ε, X ∼ U [0, 1], ε ∼ N(0, 1/3).
Source: The elements of statistical learning, T Hastie, R Tibshirani,
JH Friedman, fig. 6.1.



Kernel
smoothing

B.Chmiela

Introdution

1-dim kernel
smoothers

Local linear
regression

Local polynomial
regression

Local
regression

Structured
local
regression

Kernel width

Kernel density

Naive Bayes classifier

Computation

One-dimensional kernel smoothers

Nadaraya-Watson kernel-weighted average

f̂(x0) =

∑N
i=1Kλ(x0, xi)yi∑N
i=1Kλ(x0, xi)

with the Epanechnikov quadratic kernel

Kλ(x0, x) = D

(
|x− x0|

λ

)
, D(t) =

{
3
4(1− t2), |t| ≤ 1
0, otherwise
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One-dimensional kernel smoothers

In general, we can use a width function hλ(x0):

k-nearest-neighbors: hλ(x0) = |x0 − x[k]| where x[k] is the
kth closest xi to x0,

Nadaraya-Watson: hλ(x0) = λ,

then we have

Kλ(x0, x) = D

(
|x− x0|
hλ(x0)

)
.
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One-dimensional kernel smoothers

In practice one has to attend to:

The smoothing parameter λ, which determines the width
of the local neighborhood,

metric window widths,

issues with ties in xi,

boundary issues.
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Local linear regression

Figure: The locally weighted average has bias problems at or near the
boundaries of the domain. Source: The elements of statistical
learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.3.
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Local linear regression

Locally weighted regression solves a separate weighted least
squares problem at each target point x0:

min
α(x0),β(x0)

N∑
i=1

Kλ(x0, xi)[yi − α(x0)− β(x0)xi]
2.

The estimate is then:

f̂(x0) = α̂(x0) + β̂(x0)x0
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Local linear regression

Let b(x)T = (1, x), B ∈ RN×2 with ith row b(xi)
T and

W(x0) ∈ RN×N diagonal matrix with ith diagonal element
Kλ(x0, xi), then

f̂(x0) = b(x0)
T
(
BTW(x0)B

)−1
BTW(x0)y

=
N∑
i=1

li(x0)yi.

These weights li(x0) combine the weighting kernel Kλ(x0, xi)
and the least squares operations, and are sometimes referred to
as the equivalent kernel.
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Local linear regression

Figure: The green points show the equivalent kernel li(x0) for local
regression. Source: The elements of statistical learning, T Hastie, R
Tibshirani, JH Friedman, fig. 6.4.
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Local polynomial regression

We can fit local polynomial fits of any degree d,

min
α(x0),β(x0),j=1,...,d

N∑
i=1

Kλ(x0, xi)

yi − α(x0)−
d∑

j=1

βj(x0)x
j
i

2

.

with solution:

f̂(x0) = α̂(x0) +

d∑
j=1

β̂j(x0)x
j
i
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Local polynomial regression

Figure: Local linear fits exhibit bias in regions of curvature of the true
function. Local quadratic fits tend to eliminate this bias. Source:
The elements of statistical learning, T Hastie, R Tibshirani, JH
Friedman, fig. 6.5.
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Local polynomial regression

Assuming the model:

yi = f(xi) + εi,

with εi i.i.d with mean 0 and variance σ2, then

Var(f̂(x0)) = σ2∥l(x0)∥2,

where l(x0) is the vector of equivalent kernel weights at x0. It
can be shown that ∥l(x0)∥ increases with d and so there is a
bias–variance tradeoff in selecting the polynomial degree.
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Local polynomial regression

Figure: The variances functions ∥l(x0)∥2 for local constant, linear
and quadratic regression, for a metric bandwidth (λ = 0.2) tri-cube
kernel. Source: The elements of statistical learning, T Hastie, R
Tibshirani, JH Friedman, fig. 6.6.
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Local polynomial regression

Local linear fits can help bias dramatically at the
boundaries at a modest cost in variance,

Local quadratic fits do little at the boundaries for bias, but
increase the variance a lot,

Local quadratic fits tend to be most helpful in reducing
bias due to curvature in the interior of the domain.
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Local regression in Rp

Let b(X) be a vector of polynomial terms in X of maximum
degree d. For example:

with d = 0 we get b(X) = 1,

with d = 1 and p = 2 we get b(X) = (1, X1, X2),

with d = 2 we get b(X) = (1, X1, X2, X
2
1 , X

2
2 ).
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Local regression in Rp

At each x0 ∈ Rp solve

min
β(x0)

N∑
i=1

Kλ(x0, xi)
(
yi − b(xi)

Tβ(x0)
)2

to produce fit
f̂(x0) = b(xi)

T β̂(x0).
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Local regression in Rp

Typically the kernel will be a radial function, such as the radial
Epanechnikov or tri-cube kernel with Euclidean norm.

Kλ(x0, x) = D

(
∥x− x0∥

λ

)
.

Since the Euclidean norm depends on the units in each
coordinate, it makes most sense to standardize each predictor.
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Local regression in Rp

Figure: The left panel shows three-dimensional data, where the
response is the velocity measurements on a galaxy, and the two
predictors record positions on the celestial sphere. Source: The
elements of statistical learning, T Hastie, R Tibshirani, JH Friedman,
fig. 6.8.
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Structured local regression models in Rp

A more general approach is to use a positive semidefinite
matrix A to weigh the different coordinates:

Kλ,A = D

(
(x− x0)

TA(x− x0)

λ

)
.
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Structured local regression models in Rp

We are trying to fit a regression function
E(Y |X) = f(X1, X2, . . . , Xp) in Rp, in which every level of
interaction is potentially present. It is natural to consider
(ANOVA) decompositions of the form

f(X1, X2, . . . , Xp) = α+
∑
j

gj(Xj) +
∑
k<l

gkl(Xk, Xl) + · · ·

and then introduce structure by eliminating some of the
higher-order terms.
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Structured local regression models in Rp

We divide the p predictors in X into a set X1, . . . , Xq with
q < p, and the remainder of the variables we collect in the
vector Z. Then assume the conditionally linear model

f(X) = α(Z) + β1(Z)X1 + · · ·+ βq(Z)Xq.

For given Z, this is a linear model, but each of the coefficients
can vary with Z.
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Structured local regression models in Rp

Fit such a model by locally weighted least squares:

min
α(z0),β(z0)

N∑
i=1

Kλ(z0, zi)[yi−α(z0)−x1iβ1(z0)−· · ·+xqiβq(z0)]
2.
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Structured local regression models in Rp

Figure: In each panel the aorta diameter is modeled as a linear
function of age. The coefficients of this model vary with gender and
depth down the aorta. Source: The elements of statistical learning, T
Hastie, R Tibshirani, JH Friedman, fig. 6.10.



Kernel
smoothing

B.Chmiela

Introdution

1-dim kernel
smoothers

Local linear
regression

Local polynomial
regression

Local
regression

Structured
local
regression

Kernel width

Kernel density

Naive Bayes classifier

Computation

Selecting the width of the kernel

In each of the kernels Kλ, λ is a parameter that controls its
width:

For the Epanechnikov or tri-cube kernel with metric width,
λ is the radius of the support region,

for the Gaussian kernel, λ is the standard deviation.

λ is the number k of nearest neighbors in k-nearest
neighborhoods, often expressed as a fraction or span k/N
of the total training sample.
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Selecting the width of the kernel

There is a natural bias-variance tradeoff as we change the
width of the averaging window, which is most explicit for local
averages:

If the window is narrow, f̂(x0) is an average of a small
number of yi close to x0 , and its variance will be
relatively large close to that of an individual yi,

if the window is wide, the variance of f̂(x0) will be small
relative to the variance of any yi, because of the effects of
averaging.
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Kernel density estimation

Suppose we have a random sample x1, . . . , xN drawn from
probability density fX(x) and we wish to estimate fX(x0).. A
natural local estimate has the form:

f̂(x0) =
#xi ∈ N (x0)

Nλ
,

where N (x0) is a small metric neighborhood around x0 of
width λ. This estimate is “bumpy” so the smooth Parzen
estimate is preferred

f̂(x0) =
1

Nλ

N∑
i=1

Kλ(x0, xi)
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Kernel density estimation

With Gaussian kernel

Kλ(x0, x) = ϕ

(
|x− x0|

λ

)
= ϕλ(|x− x0|),

the Parzen estimate has form

f̂(x0) =
1

N

N∑
i=1

ϕλ(|x− x0|) =
(
F̂ ∗ ϕλ

)
(x).

This is the convolution of the sample empirical distribution F̂
with ϕλ.
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Kernel density estimation

In Rp the natural generalization of the Gaussian density
estimate amounts to using the Gaussian product kernel in

f̂(x0) =
1

N(2λ2π)
p
2

N∑
i=1

exp

(
−1

2
(∥xi − x0∥/λ)

)2

.
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Kernel density estimation

Figure: A kernel density estimate for systolic blood pressure.The
density estimate at each point is the average contribution from each
of the kernels at that point. Source: The elements of statistical
learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.13.
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Kernel density classification

Suppose for a J class problem we fit nonparametric density
estimates f̂j(X), j = 1, . . . , J , separately in each of the classes,
and we also have estimates of the class priors π̂j (usually the
sample proportions). Then

P̂ (G = j|X = x0) =
π̂j f̂j(x0)∑J
k=1 π̂kf̂k(x0)

.
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Kernel density classification

Figure: The left panel shows the two separate density estimates for
systolic blood pressure in the CHD versus no-CHD groups, using a
Gaussian kernel density estimate in each. The right panel shows the
estimated posterior probabilities for CHD. Source: The elements of
statistical learning, T Hastie, R Tibshirani, JH Friedman, fig. 6.14.
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Kernel density classification

Figure: The population class densities may have interesting structure
(left) that disappears when the posterior probabilities are formed
(right). Source: The elements of statistical learning, T Hastie, R
Tibshirani, JH Friedman, fig. 6.15.
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Kernel density classification

We need only to estimate the posterior well near the decision
boundary, for two classes, this is the set{

x|P (G = 1|X = x) =
1

2

}
.
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Naive Bayes classifier

The naive Bayes model assumes that given a class G = j, the
features Xk are independent:

fj(X) =

p∏
k=1

fjk(Xk).

While this assumption is generally not true, it does simplify the
estimation dramatically.
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Naive Bayes classifier

The individual class-conditional marginal densities fjk can
each be estimated separately using one-dimensional kernel
density estimates,

if a component Xj of X is discrete, then an appropriate
histogram estimate can be used.
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Computational considerations

memory-based methods,

fitting is done at evaluation or prediction time,

for many real-time applications, this can make this class of
methods infeasible.
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Computational considerations

cost to fit single observation x0 is O(N),

the smoothing parameter λ for kernel methods are typically
determined using cross-validation, at a cost of O(N2),

implementations of local regression, such as the loess
function in R use triangulation schemes to reduce the
computations,

it computes the fit exactly at M carefully chosen locations
at a cost of O(NM),

then use blending techniques to interpolate the fit
elsewhere (O(M) per evaluation).
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Thank you for your attention.
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