ML Solutions for Publication Growth

Dawid Kubkowski

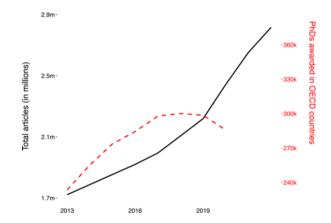
Supervised by: Dr Michał Burdukiewicz Dr Grzegorz Jagiella

April 15, 2025

- The exponential rise in scientific publications has made manual review impractical.
- Researchers struggle to identify relevant studies amidst the overwhelming volume of articles.
- Our solution: An ML-driven approach to automatically assess and prioritize research articles based on relevance.

Publication Deluge: The Growing Challenge

The number of scientific publications is increasing rapidly.



Source: Hanson et al., 2024, *The Strain on Scientific Publishing*, *Quantitative Science Studies*, vol. 5, no. 4, pp. 823–843, DOI:10.1162/qss_{a0}0327, licensed under CC BY-NC-SA 4.0.

Traditional methods struggle to keep pace:

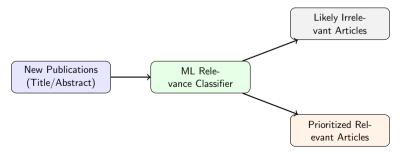
- Time-Intensive: Screening thousands of articles manually is extremely slow.
- Costly: Requires significant human resources and expertise.
- Inconsistent: Subjectivity and reviewer fatigue can lead to errors and biases.

A scalable, automated solution is needed.

Our Approach: Al-Powered Prioritization

We propose using Machine Learning (ML) to assist researchers:

- **Goal:** Develop an automated system to classify research articles based on relevance using titles and abstracts.
- **Benefit:** Prioritize potentially relevant papers, significantly reducing manual screening effort.
- Method: Train classification models on curated datasets to predict article relevance.



Amyloids & AmyloGraph

To demonstrate our approach, we focus on the challenging domain of amyloid research:

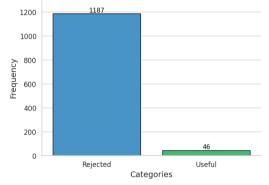
- We focus on amyloids—proteins involved in neurodegenerative disorders.
- Understanding amyloid interactions is crucial, as they can contribute to disease onset.
- A major challenge: Different experimental techniques highlight different aspects of these interactions.
- To standardize this knowledge, we developed an ontology for amyloid interactions and created **AmyloGraph**, the first dedicated database for these interactions.

Data Curation: Building the Training Set for Amyloids

High-quality labeled data is essential for training the ML model.

Curation Process:

- Manually reviewed articles based on title/abstract.
- Labeled articles as **Relevant** (Accepted) or **Non-Relevant** (Rejected).
- Criteria for Relevance: Must report experimental data on antibody-amyloid interactions affecting amyloid formation.
- Common Rejection Reasons:
 - Review articles, preprints, non-English
 - Missing experimental data
 - Irrelevant scope (e.g., in silico only, wrong protein type)



Distribution of Relevant vs. Non-Relevant articles.

Note the class imbalance.

Model Pipeline: Preprocessing

- We are developing an ML model to classify research articles based on title and abstract.
- Preprocessing:
 - Text cleaning and creating a document-term matrix (DTM), which counts how often each word appears in a document.

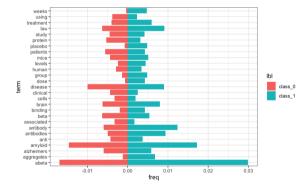
```
corpus <- create_corpus(c("This is first example.",
                                  "This is another example",
                               "This is another another example"))
words = find_words(corpus, frequency = 1)
create_document_term_matrix(corpus, words)
```

##		example	first	another
##	1	1	1	0
##	2	1	0	1
##	3	1	0	2

Exploratory Data Analysis

Visualization of Common Words in the Text

class_0



Model Pipeline: Classification

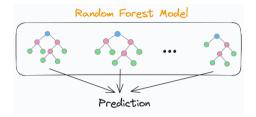
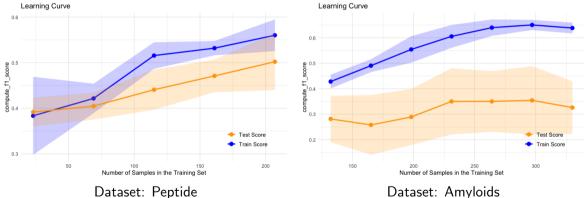


Figure source: blog.dailydoseofds.com

- Classification:
 - Binary classification model (relevant vs. non-relevant) trained on curated labels.
- Evaluation Metrics:
 - Accuracy, precision, recall, F1-score.

Learning Curves



Do we benefit from more data? Learning curves show model performance vs. training set size.

11 / 13

Hyperparameter Grid Search

Fine-tuning the model for better generalization.

- We systematically explored different Random Forest settings (mtry, nodesize, ntree, etc.) using Grid Search with Cross-Validation.
- **Goal:** Find the hyperparameter combination that yields the best performance on unseen data (test set).

٠	Performance was assessed	using mean	training score,	cross-validation score,	and test score.
---	--------------------------	------------	-----------------	-------------------------	-----------------

\$	mtry	¢	nodesize 🗘	ntree 🗧 🗘	class_val [‡]	min_freq [‡]	threshold [‡]	mean_train_score 🗘	cv_score	test_score 🗘
12223	0.03				0.4		0.18	0.9374350	0.5109524	0.3636364
11416	0.03				0.5		0.14	0.9966102	0.5032756	0.4571429
16480	0.07				0.5		0.22	0.8524413	0.5003868	0.3589744
5918					0.3		0.12	1.000000	0.4929365	0.2580645
14434					0.3		0.24	0.8761981	0.4851732	0.2500000
6818					0.1		0.18	0.9075274	0.4841270	0.2400000
16481	0.07				0.5		0.24	0.8983229	0.4790476	0.4516129
13071	0.05				0.3		0.12	0.9731007	0.4785931	0.3243243

Acknowledgements

We gratefully acknowledge the support for this research:

• Institution:

Bioinformatics and Multiomics Analysis Laboratory, Clinical Research Centre, Medical University of Białystok.

• Funding Source:

National Science Center, Poland, via the SONATA 19 grant. Project No: DEC-2023/51/D/NZ7/02847.

• Project Title:

"Taming aggregation with AmyloGraphem 2.0: database and predictive model of amyloid self-organization of modulators".

