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Introduction

® The exponential rise in scientific publications has made manual review impractical.

® Researchers struggle to identify relevant studies amidst the overwhelming volume of
articles.

® Qur solution: An ML-driven approach to automatically assess and prioritize research
articles based on relevance.
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Publication Deluge: The Growing Challenge

The number of scientific publications is increasing rapidly.
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Source: Hanson et al., 2024, *The Strain on Scientific Publishing*, Quantitative Science Studies, vol. 5, no. 4, pp.
823-843, DOI:10.1162/qss200327, licensed under CC BY-NC-SA 4.0.
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https://doi.org/10.1162/qss_a_00327

Limitations of Manual Curation

Traditional methods struggle to keep pace:
® Time-Intensive: Screening thousands of articles manually is extremely slow.
® Costly: Requires significant human resources and expertise.

® |Inconsistent: Subjectivity and reviewer fatigue can lead to errors and biases.

A scalable, automated solution is needed.
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Our Approach: Al-Powered Prioritization

We propose using Machine Learning (ML) to assist researchers:

® Goal: Develop an automated system to classify research articles based on relevance using
titles and abstracts.

® Benefit: Prioritize potentially relevant papers, significantly reducing manual screening
effort.

® Method: Train classification models on curated datasets to predict article relevance.
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Amyloids & AmyloGraph

To demonstrate our approach, we focus on the challenging domain of amyloid research:

® We focus on amyloids—proteins involved
in neurodegenerative disorders.
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® A major challenge: Different experimental
techniques highlight different aspects of
these interactions.

® To standardize this knowledge, we
developed an ontology for amyloid
interactions and created AmyloGraph,
the first dedicated database for these
interactions.

6/13



Data Curation: Building the Training Set for Amyloids

High-quality labeled data is essential for training the ML model.

Curation Process:
® Manually reviewed articles based on
title/abstract.
® Labeled articles as Relevant (Accepted)
or Non-Relevant (Rejected).

® Criteria for Relevance: Must report
experimental data on antibody-amyloid

interactions affecting amyloid formation.

e Common Rejection Reasons:
® Review articles, preprints, non-English
® Missing experimental data
® |rrelevant scope (e.g., in silico only,
wrong protein type)
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Model Pipeline: Preprocessing

® \We are developing an ML model to classify research articles based on title and abstract.
® Preprocessing:
® Text cleaning and creating a document-term matrix (DTM), which counts how often each
word appears in a document.

corpus <- create_corpus(c("This is first example.",
"This is another example",
"This is another another example"))

words = find_words(corpus, frequency = 1)
create_document_term_matrix(corpus, words)

## example first another

## 1 1 1 0
## 2 1 0 1
## 3 1 0 2
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Exploratory Data Analysis

Visualization of Common Words in the Text
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Model Pipeline: Classification

Prediction

Figure source: blog.dailydoseofds.com

¢ Classification:

® Binary classification model (relevant vs. non-relevant) trained on curated labels.
¢ Evaluation Metrics:

® Accuracy, precision, recall, Fl-score.
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https://blog.dailydoseofds.com/p/your-random-forest-is-underperforming

Learning Curves

Do we benefit from more data? Learning curves show model performance vs. training set size.
Learning Curve Learning Curve
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Hyperparameter Grid Search

Fine-tuning the model for better generalization.

® We systematically explored different Random Forest settings (mtry, nodesize, ntree,
etc.) using Grid Search with Cross-Validation.

® Goal: Find the hyperparameter combination that yields the best performance on unseen
data (test set).

® Performance was assessed using mean training score, cross-validation score, and test score.

* mtry * nodesize - ntree - classval - min_freq - threshold * mean_train_score * cv_score test_score
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