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1. Introduction 

Formula manipulation is the process of carrying out operations and transformations 
on mathematical expressions or formulas. In formula manipulation processes, 
expressions with unnecessarily complicated structures are invariably generated. 
For example, most differentiation algorithms, when applied to the expression 
x 2 + x(e e~+~) + 1 will produce an expression similar to 

2x I -~- l(e e3+2) + x(O'e 3 + 0)(e e~+2) -t- 0 (1) 

instead of the functionally equivalent and structurally simpler expression 

2X + e e3+2 (2)  

Such behavior seems to be intrinsic to most formula manipulation algorithms. The 
process of transforming expressions like (1) into a simpler equivalent form like (2) 
is called simplification. Simplification is also taken to embrace other kinds of trans- 
formations, such as reducing rational expressions by factoring out greatest common 
divisors, lexieographieal ordering of subexpressions appearing in sums and products, 
etc. 

There are at least three important reasons for keeping expressions in a simplified 
form. First of all, simplified expressions usually require less memory. Second, the 
processing of simplified formulas is faster and simpler. The processing is simpler in 
the sense that  simplified formulas usually possess nice features which make possible 
cleaner and more precise algorithm design. Third, functionally equivalent expres- 
sions are easier to identify when they are in simplified form. Indeed, simplification 
is of such a nature that  almost no formula manipulation program can do without 
simplification capabilities. 

Given the central role of simplification, it is hardly surprising to find that  many 
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algorithms for performing simplification have been reported in the literature. See 
Sammet's bibliographies [18, 19] for a listing of these. The usual form of attack of 
these algorithms has been to take a set of simplifying transformations tha t  apply 
in obvious local cases and to t ry  to weld these into a stable and coherent global 
scheme for simplifying a class of expressions. The need for simplification and the 
kind of simplification transforms needed seem obvious in simple cases. However, as 
expressions and algorithms increase in complexity, the answers are no longer so 
obvious. 

Fenichel [8], Moses [11], and Tobey, Bobrow, and Zilles [20] have discussed the 
problems of the simplification algorithms in some detail. One of the main conclu- 
sions to be drawn from their discussions is that  simplification has meaning only in a 
local context. For instance, Fenichel points out tha t  csc2(x) - cot (x) csc (x) is 
easier to integrate than its structurally simpler equivalent 1/[1 + cos (x)]. Thus 
in the context of integration the former expression is simpler, whereas in other cases 
the latter is considered simpler. 

Recently Richardson [15] provided some theoretical evidence of simplification 
problems. He proved tha t  for sufficiently rich classes of expressions it is impossible 
to identify all expressions which are identically zero. Hence no set of local simplifi- 
cation transforms such as x -- x --~ 0 can be sufficient for Richardson's class of 
expressions. 

In this paper we study simplification through the concepts of canonical and 
normal forms. These global concepts, as developed in Section 3, are formalized 
alternatives to the ill-defined notion of a simplified form and hence are appropriate 
for a careful study. The structures of some common classes of expressions are 
studied and canonical (or normal) forms are shown to exist for these classes. 

Some of the results of Section 4 are similar to results obtained by others. Results 
of W. S. Brown [2] and Richardson [16] are discussed later. P. J. Brown [1] has 
written an interesting paper in which he studies the existence of canonical forms in 
a more general setting than we have. A paper by G. Rousseau [17] attacks some 
problems similar to ours in a somewhat different realm. He proves the existence of 
an effective procedure for deciding whether or not functions contained in a subclass 
of the primitive recursive functions are identically zero. (This problem is recursively 
undecidable for the class of all primitive recursive functions.) 

This paper is itself a revision of parts of [3]. 

2. Undecidability Results 

From Richardson's theorem we know that  canonical forms cannot exist for certain 
classes of expressions. In order to limit the search for canonical forms, it is desirable 
to have as much information as possible about negative results. Thus in this section 
Richardson's theorem and proof are studied in detail. From Richardson's proof 
and from studies on the unsoIvability of Hilbert 's tenth problem, some conclusions 
about sharpenings of Richardson's theorem are drawn. 

To be given a class of expressions ~ means to be given an effective set of rules for 
determining the well-formed expressions in the class. The expressions must be 
formed from a finite set of atomic symbols of which a subset must be designated as 
variables. Any member of ~ not containing a variable is called an k-constant or 
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constant &-expression. The expressions are to be interpreted as functions over some 
domain ~. 

If Es and E2 are members  of an expression class &, Es is said to be identical to 
E2 if Es and E2 are the same string of atomic symbols. This relation is denoted by 
El -= E2 • E1 and E2 are functionally equivalent or simply equivalent if for all assign- 
ments of values in ~ to their variables for which they are defined, they are equal. 
This relation is denoted by Es = E~. 

In all the classes & of this section and Section 4 all the expressions are to be 
interpreted as single-valued elementary functions of one or more variables over the 
domain ~ of &-constants. Richardson's  theorem provides us with a basis for our 
undecidability results. 

THEOREM. Let (R consist of the class of expressions generated by 
( i) the rational numbers and the two real numbers ~ and loge 2, 

(ii) the variable x, 
( iii) the operations of addition, multiplication, and composition, and 
(iv) the sine, exponential, and absolute value functions. 

If E C (R, the predicate " E  = 0" is recursively undecidable. 
This decision problem will be referred to as Richardson's  decision problem. 

(Informal descriptions such as the above will be used in the text  to describe expres- 
sion classes. B N F  (Backus-Naur  form) definitions for some classes can be found 
in the Appendix. ) 

In order to derive some further results tha t  follow from the proof of this theorem, 
the proof is included here. For  the proof a variat ion of the class ~ is needed. Let  
~1 be the class of expressions generated by 

(i) the rational numbers and the real numbers ~r and loge 2, 
(ii) the variables xl , x2, . . .  , Xn , 

(iii) the operations of addition, multiplication, and composition, and 
(iv) the sine and exponential functions. 

~1 differs from ~ by  containing an arbi t rary number  of variables and by not con- 
taining the absolute value function. 

Richardson shows tha t  for G(xs) in (% (G(x)  is a member  of ~ since G is an 
expression of only one variable) ,  the predicate " there  exists a real number  a such 
that G(a) < 0" is recursively undecidable. This decision problem will be referred 
to as the decision problem for ( ~ .  Now suppose tha t  Richardson's decision problem 
is decidable and G(xs) is in ~s • Consider F ( x )  = I G(x)  [ - G(x) .  F ( x )  is in 
and F ( x )  # 0 if and only if there exists a constant b in ~ such tha t  G(b) < O. 
Since the constants of ~ (and (Rs) are dense in the reals and all expressions repre- 
sent continuous real functions, there exists a real b such tha t  G(b) < 0 if and only 
if there exists a b in ~s such tha t  G(b) < 0. Thus if we can decide if F ( x )  = O, 
we can decide if there exists a real b such tha t  G(b) < 0. Except  for the proof of the 
undecidability of the decision problem for ~s ,  the proof of Richardson's  theorem is 
complete. 

The proof of the undecidability of the decision problem for (R~ will be presented 
as a series of lemmas. The  start ing point is a variat ion by Davis  [5] of a result of 
Davis, Pu tnam,  and Robinson [7]. 

THEOREM. Let S be a recursively enumerable set of nonnegative integers. For some 
polynomial 15(s, x~, . . .  , Xn, X~+i), with integral coefficients, S = ls l there exist 
nonnegative integers as, . . .  , an such that 15(s, as,  . . "  , a n  , 2 an) = 0}. 
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Since there exist recursively enumerable sets which are not recursive, we have 
immediately: 

COROLLARY. There exists a subset of  (R1, say (P = { P ( x l ,  . . .  , xn)}, of poly- 
nomials  with integral coe~cients in  Xl , . . .  , xn , 2 ~ such that the predicate "there 

exist nonnegative integers a l ,  . . .  , an such that P ( a l ,  . . .  , an) = 0"  is recursively 

undecidable. 
Now consider 
LEMMA 1. For every F in  qtl there is a G in (R1 such that ( i )  G(x l  , . . .  , xn) > 1 

for  all real x l ,  " "  , x n ,  and ( i i )  G ( x l ,  . . .  , xn) > F(Xl  + 51 ,  . . .  , x~ + An) 
for  all real xi  and all real Ai satisfying I Ai I < 1, i = 1, • • • , n. 

G is called a dominating funct ion for F. 
PROOF. The proof follows easily by induction on the number of operators and 

functions in the expression for F. 
Using Davis's theorem and Lemma 1 Richardson proves: 
LEMMA 2. For each t '  in  • there exists F in  5~ such that ( i)  there exists an n-tuple 

oJ nonnegative integers a = (a l ,  . . .  , an) such that P ( a )  = 0 i f  and only i f  ( i i )  

there exists an n-tuple of  nonnegative real numbers b = (bl,  • • • , bn) such that F(b)  < 
O. 

PROOF. Let  P be an arbitrary member of (P. Observe that  (O/Ox~)P 2, i = 1, 
• . .  , n, is in ~1 • Let  Ki  be the dominating function for (0 /0xl)P 2. Define F by 

F ( x l  . . .  xn) (n  + 1)2[p2(xl ,xn) + ~ (sin 2 2 , , = , . . .  7rxl)Ki (Xl, " "  , xn)l - 1. 
i=1 

Obviously (i) implies (ii). To show that  (ii) implies (i), choose a~ to be the smallest 
integer such tha t  { a~ - bi I -< ½. We shall show that  P2(a) < 1 which implies that  
P ( a )  = 0 since P maps nonnegative integers into integers. F (b )  < 0 implies that 

p2(b ) + ~ • 2 2 b (sin ~rb~)Ki( ) < 1 / ( n  + 1) 2 . 
i = l  

Hence P2(b) < 1 / ( n  + 1) and I sin 7rb~ I K~(b) < 1 / ( n  + 1), i = 1, . . -  , n. By 
the n-dimensional mean value theorem 

p2(a)  _< pc(b)  + ~ l a , -  b , l ~  0 P2(c , ,  . . . , c n ) ,  
i=1 (~Xi 

where c~ is between ai and bl. From the definition of K~, 

P2(a) < P2(b) + ~ l al - b~ I K~(b). 
i=1 

Since I a~ - b~ ] < ½, we have [ a~ - b~ ] < ] sin ~rb~ I; hence 

p2(a) < P2(b) + ~ ] sin 7rb~ ] K~(b). 
~=~ 

Now since each of the n + 1 terms on the right is less than 1 / ( n  + 1), we have 
P2(a) < 1, as was to be shown. 

COROLLARY. For F in (R1 the predicate "there exists an n-tuple b of  real numbers 
such that F(b )  < 0"  is recursively undecidable. 

PROOF. Consider F as defined in Lemma 2. If we could decide if there exists an 
n-tuple b of real numbers such that  F(bl  2, . . -  , bn 2) < 0, then we could decide, by 
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Lemma 2, if there exists an n-tuple a of nonnegative integers such that  P ( a )  = 0. 
But from the corollary to Davis's theorem, this is not possible. 

The next lemma will enable us to obtain the above corollary for expressions with 
only one variable. 

LEMMA 3. Le t  h ( x )  = x s in  x and g ( x )  = x s in  x 3. Then  for  a n y  real numbers  

al , . . .  , am and a n y  0 < ~ < 1 there ex is ts  b > 0 such that 

Ih(b) - a l l  < ~, I h ( g ( b ) )  - a2[ < ~, . - . ,  I h ( g ( . . . g ( b ) . . . ) )  - -  anl < e. 

PROOF. The proof is by induction on n. Richardson first shows that  for any two 
real numbers al and a2 there exists b > 0 such that  I h (b) - al[  < e and g (b) = a2. 
Suppose the lemma is true for n. Then there exists b' such that  

I h ( b ' ) - a 2 1  < ~, ] h ( g ( b ' ) )  - a 3 1  < E, I h ( g ( . . . ( g ( b ' ) ) . . . ) )  - a , ~ + , l  < ~. 

By the preceding statement there exists b > 0 such tha t  I h ( b )  - al I < ~ and 
g(b) = b'. Hence the result holds for n + 1. 

COROLLARY. For  G ( x l )  in  (R1 the predicate "there ex is ts  a real number  a such that 
G(a) < 0"  is  recursively undecidable.  

(Note that  G ( x )  is in ~.)  
PROOF. Let  F ( X l ,  • • • , x , )  be in (R1 and consider 

G(x~) = F ( h ( x l ) ,  h ( g ( x l )  ),  . . .  , h ( g ( .  . . ( g ( x~ )  ) .  . . ) ) ). 

Then there exists such an a if and only if there exist real numbers bl, • .. , b~ such 
that F(b~,  . . . ,  bn) < O. 

This corollary proves the undecidability of the decision problem for ~1 and hence 
completes the proof of Richardson's theorem. 

Now let us consider some implications of the undecidability of Hilbert 's tenth 
problem. In particular if Hilbert 's  tenth problem is undecidable then Richardson's 
result holds for a proper subset of ~. Hilbert 's  tenth  problem refers to one of the 
problems tha t  David Hilbert  [9] listed in a famous presentation in 1900. The prob- 
lem is the one of deciding if an arbitrary polynomial (arbi t rary with respect to 
degree and number of variables) with integral coefficients has integral roots. The 
problem is still unresolved but  the evidence to date [4-7] suggests tha t  the problem 
is recursively undecidable. 

Let ~2 be the class of expressions generated by 
(i) the rational numbers and the real number ~-, 

(iX) the variable x, 
(iii) the operations of addition, multiplication, and composition, and 
(iv) the sine and absolute value functions. 

Note that  ~2 is a proper subclass of (R since it contains neither loge 2 nor the ex- 
ponential function. 

THEOREM 1. I f  Hi lber t ' s  tenth problem is  recursively undecidable then for  E ( x )  

in (R2 the predicate " E (  x )  = 0 "  is  recursively undecidable.  
The proof is almost identical to the proof of Richardson's theorem. The unsolva- 

bility of Hilbert 's tenth problem corresponds to the unsolvability of the exponential 
equations of Davis, Putnam, and Robinson. Thus by hypothesis if P ( X l ,  . . .  , x~) 

is a polynomial with integral coefficients, the predicate " there  exist integers a l ,  • • • , 
aN such tha t  P ( a l ,  . . .  , an) = 0"  is recursively undecidable. The correspondent 
to Lemma 2 is 
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LEMMA 2'. For each po lynomia l  P ( X l ,  " .  , x~) with integral coei~cients there 

exists F(x~ , . . .  , x~) in  gl3 (where (~3 is to (R2 as (R~ is to ~ )  such that ( i )  there exist 

integers al , •. • , an such that P ( a l  , • • • , a~) = 0 i f  and only i f  ( i i )  there exist real 

numbers  b~ , . . .  , bn such that F ( b l  , . . .  , b,,) < O. 

The proof is exactly like the proof of Lemm~ 2 except that  

F =  (n  -~ 1)2[ P ~  i-1 ~ (sin2~-xi)K~2] - 1 

does not contain the term 2 ~ = exp (x~ log~ 2) as the F of Lemma 2 does. The 
remainder of the proof of Theorem 1 is exactly like the proof of Richardson's 
theorem. 

3. Canonical  and N o r m a l  Forms  

In this sectiom.the definitions of canonical and normal forms are given along with 
sufficient conditions for the existence of a canonical form. 

An f -normal  f o rm  for a class of expressions ~ is a computable mapping f from 
into 8 that  satisfies the following two properties for all E in 3: 

(i) f ( E )  = E ,  and 
(ii) if E = O, f ( E )  --- O. 

An f -canonical  f o r m  is an fmormal  form with the additional uniqueness property 
that  for all E l ,  E2 in ~ such tha t  E1 = E2, f(E1) ~ f ( E 2 ) .  If the particular f is 
clear from context or if the f is arbitrary, we shall frequently drop the prefix and 
simply use canonical (normal) form. If E is an expression such that  f ( E )  -= E 

then E is said to be in ( f - )  canonical (normal) form.  A class of expressions is called 
a canonical  (normal) class or is said to possess a canonical  (normal) f o r m  if there 
exists a canonical (normal) form for it. 

For  a given set of expressions ~ and a canonical (normal) f o r m f  for 5, the members 
of the set f(~) of canonical expressions will usually have a certain "form." For ex- 
ample, one canonical form for the polynomials with rational coefficients maps each 
polynomial into the "form" ro + rlx + . . .  + rnx n, where the r~'s ~re rational 
numbers in canonical form. We call generalized expressions like ro + rlx ~ . . .  
rnX n patterns.  A particular expression E is said to be an instance of the pattern P 
if E matches P. This relation is denoted by E = = P. Thus x and 1 + 3x 2 are 
instances of the above polynomial pat tern but  (2 + 5x)(x  2 + x 3) is not. 

The pat tern concept is useful in describing canonical (normal) forms. But  pat- 
terns are more than descriptive devices in that  the pat tern associated with a canoni- 
cal (normal) form embodies much vital information about the form. I t  may be that 
a careful formalization of th 0 pat tern concept may lead to f u r t h e r  results about 
canonical (normal) forms. However, in this paper we concentrate on the equivalence 
problem and only use the pat tern concept for descriptive purposes. Hence it is 
not formalized here. (This discussion of patterns uses the terminology and symbol- 
ism of FORMULA ALGOL [10, 13, 14].) 

Frequently it is necessary to know that  a total ordering can be imposed on a 
class of expressions. Usually this can be done in several different ways, but note 
tha t  it can always be done with a lexicographical scheme. 

Now sufficient conditions for the existence of a canonical form will be given. Given 
class 3, closed under multiplication, a subclass ~ is linearly independent over a 
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subclass ~i , if for Ai in ~1, X~ in ~ ,  X~ ~ X j ,  A1X1 + • • • + AnXn = 0 implies 
that A1 = A2 . . . . .  A~ = 0. 

THEOREM 2. Let ~ be a class of expressions closed under multiplication. Suppose 
~ and ~2 are subclasses of 8 with the following two properties: ( i) ~1 and ~2 possess 
canonical forms fl  and f2 respectively, and ( ii) f2( ~2) is linearly independent over ~1. 

Let.f2( ~2) :fl(E1) denote the set of all expressions A1X1 + .. • + A~X~ , where 
( i) A i , X i  are in f1( ~1) , f2(E2) respectively, 

( i i)  A i  # O for i = 1, . . .  , n, and 
(iii) X i  << X~ i f  i < j ,  where << is any tota~ ordering on ~2 • I f  f is a computable 

mapping from ~ into f 2 ( ~ )  :fl(E~) [-J {0} such that f ( E )  = E,  then f is a canonical 
form for ~. 

PROOF. I t  is only necessary to show tha t  E~ = E~ implies t ha t f (E~)  ~ f ( E : ) .  
Suppose f (E~)  ~ A~X~ + . . .  + A~X~ and f (E~)  ~ B1Y~ + . . .  + BraYs .  Let 
{Z~, • • • , Z~} be the distinct members  of f~(~)  occurring among the X~ and Y~. 
Also assume the Z~'s are in ascending order. Then 

f (E~)  - - f ( E ~ )  = C~Z1 + . . .  + C~Z~ = O, 
where 

I A~ - Bi  
Cl ~ A i  

for some i and j if Zz appears  in both  f (E1)  and f (E2) ,  
if Zz appears  in f (E1)  but  not in f (E2) ,  
otherwise. L - B j  

By linear independence f(E1) - f (E2)  = 0 if and only if C~ = 0, l = 1, • ..  , n. 
Since Ai ,  Bj # 0, A i ,  B~ # 0. Hence C~ ~ A~ -- Bj  = 0, which implies tha t  
Ai ~ Bj since A~ and B~. are in canonical form. Thus n = m = k, X~ ~ Y~ ~ Z i ,  
and A~ -~ B i ,  i = 1, . .  • n. Hence f(E1) ~ f(E2).  

This theorem is almost self-evident. I t s  purpose is to point out the main tech- 
nique used herein to obtain new canonical forms, i.e. mapping classes of expres- 
sions into subclasses which are linear manifolds whose coefficient and basis sets are 
already known to possess canonical forms. 

4. Canonical and Normal  Forms for Exponential  Expressions 

In this section canonical and normal forms for variations of the Richardson class 
are presented. For simplicity, all results are s ta ted and proved for one variable, 

although all results hold for an arbi trary number  of variables. All the proofs depend 
heavily on number  theoretic considerations. The first proof uses Lindemann's  
theorem (cf. [12, p. 117]). 

THEOREM (Lindemann) .  Suppose a l ,  . . . ,  ak are distinct algebraic numbers. 
Then the set {e ~1, . . .  , e ~k} is linearly independent over the algebraic numbers. 

Now consider the class FOE of first-order exponential expressions generated by 
(i) the rationals and the complex constant  i, 
(ii) the variable x, 

(iii) the operations of addition, multiplicationl and restricted composition, and 
(iv) the exponential function. 
Restricted composition means tha t  the exponential function may  not be nested, 

i.e. expressions like exp (exp (x) + 1) are not permitted.  See the Appendix for a 
more rigorous definition of the class FOE. The class FOE contains as a subclass the 
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class ~ of polynomials over the field of complex rationals. ~ possesses a canonical 
form. 

THEOREM 3. Let  $1,  " "  , Sk be distinct canonical members of  (P. Then the set 
{exp ($1),  • • • , exp (Sk)  } is linearly independent over (P. 

PROOF. Suppose P l ( x ) e x p  ($1) + . . .  + P~(x)  exp (Sk) = 0 where Pi, 
i = 1, . . .  , k, is in (P. Since a polynomial has only finitely many roots, there are 
only finitely many rationals r such that  for i ~ j ,  S i ( r )  = S t ( r ) .  Thus there are 
infinitely many rationals r such that  S l ( r ) ,  . . .  , Sk (r )  are distinct numbers. Hence 
by Lindemann's theorem, for each such r, P i ( r )  = O, i = 1, • • • , k. Hence P~ = 0 
and the linear independence is established. 

COROLLARY 3.1. There exists a canonical form f for the first-order exponentials 
that maps  each F O E  into an instance of the pattern P1 exp ($1) ~ • • • ~ Pk exp ( Sk), 

where the P i  are nonzero canonical members of ~ and the S i  are canonical members of 
(P with the property that S t  ~ S j  i f  i ~ j .  

PROOF. Each FOE can be straightforwardly mapped into such an equivalent 
form by application of the transformations exp (El) exp (E2) ~ exp (El + E2) 
exp (0) --~ 1. The fact that  such a mapping is canonical follows from Theorems 2 
and 3. 

This corollary obviously will still hold if the class FOE is expanded to include 
trigonometric functions that  can be expressed in terms of exponentials. If the 
division operator is introduced a normal form exists tha t  maps each expression into 
a quotient of canonical expressions of the form P1 exp (R~) + .. • + Pk exp (Rk) 
where the P~ are polynomials and the R~ are rational function expressions. In the 
FOE expressions composition is limited. This limitation may be removed by using 
a conjectured generalization of Lindemann's theorem. 

Consider the class of exponential expressions generated by 
(i) the rationals and i, 

(ii) the variable x, 
(iii) the operations of addition, multiplication, and composition, and 
(iv) the exponential function. 
The order of an exponential expression is the maximum number of nestings of the 

exp function. For example, all polynomials are of order 0, all FOE's  are of order 
less than or equal to 1, and 

exp (exp (exp (x + 2) + 3i)) + exp (x 2 + 5) + X 10 "~- 1 

is of order 3. 
For exponentials of order less than or equal to 1, Corollary 3.1 gives a canonical 

form. Each order 1 expression is mapped into an instance of the pattern 

P~ exp (S~) + . . .  + Pk exp (Sk), 

where the P~ are nonzero canonical polynomials and the S~ are distinct canonical 
polynomials in ascending order. 

Now define the mapping f on the exponential expressions as follows. If E has 
order less than or equal to 1, then f ( E )  is the equivalent instance of the above 
pattern. If f has been defined for expressions of order less than or equal to n - 1 
and E has order n, f ( E )  is the equivalent instance of the pat tern 

P~ exp (E~) + . . .  + Pk exp (Ek) ,  (3) 
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where the Pi  are nonzero canonical polynomials and the Ei  are f -form exponentials 
of order at most n - 1 with the property tha t  Ei  << E j  if i < j. 

CONJECTURE. Suppose E l ,  . . .  , Ek are distinct f-form exponential constants. 
Then the set of constants lexp (El),  . . .  , exp (Ek)} is linearly independent over the 
rationals. 

If E l ,  . . .  , Ek are 0 order constants then the conjecture is a special case of 
Lindemann's theorem. However  the proof of the conjecture, if true, appears to be 
beyond current boundaries of number  theoretic research since little seems to be 
known about such specific numbers as e e. The conjecture implies tha t  e e is tran- 
scendental. 

THEOREM 4. I f  the above conjecture is true, f is a canonical form for the exponential 
expressions. 

PROOF. I f  E and E '  are exponential expressions, it is only necessary to show tha t  
f(E) ~ f (E ' )  implies tha t  E ~ E ' .  I t  is clear from the definition of f tha t  f ( f ( E )  - 
f(E')) ~ 0 if f ( E )  # f (E ' ) .  So it is sufficient to show tha t  if E is an instance of 
(3) and E # 0, then E # 0. The proof is by induction on n, the order of E. By 
Theorem 3 the result holds when n < 1. Assume the result holds for all instances 
of (3) with order less than  n. Let  

E(x)  = Pl(X) exp (El(X))  + . . .  + Pk(x) exp (Ek(x) ) 

be an expression of order n. Assume E(x )  = 0. Then for each rational r in any 
finite closed real interval I ,  E ( r )  = 0. By the conjecture this implies tha t  either 

(i) Pi(r) = 0 for i = 1 , . - . , k ,  or 
(ii) there exist 1 < i < j < k such tha t  E~(r) = E / r ) .  
Since (i) or (ii) holds for every r in I, either (i) or (ii) holds for infinitely many  

r in I.  Each exponential expression represents an entire analytic function and an 
analytic function is completely determined by its values at an infinite number  of 
points on a closed interval. Thus either 

(i) P~ = 0 for i =  1, . . - , / ~ , o r  
(ii) E i  = E ~ .  

But (i) does not hold by the definition of E and (ii) does not hold by the induction 
hypothesis. Hence E # 0. 

If the division operator is allowed in the exponential expressions, the existence 
of a normal form may  be shown with an argument  similar to the above. Such a 
normal form g would map each well-defined expression into an equivalent instance 
of the pa t te rn  [P lexp  (El)  + - - -  + Pk exp (Ek)]/[Q1 exp (F1) + . . .  + 
Q: exp (F~)],  where each P i ,  Qi is a nonzero canonical member  of ~ and each 
El, F~ is a g-form exponential with the properties tha t  if i < j, g(Ei -- Ej)  
0 ~ g(F~ - Fj) and El << E j ,  Fi << F t .  

This normal form is analogous to a normal form given by W. S. Brown [2] for 
the class ~ of expressions generated by 

(i) the rationals, ~-, and i, 
(ii) the variables x~, - . .  , x~ (denoted collectively by x), 

(iii) the operations of addition, subtraction, multiplication, division, and com- 
position, and 

(iv) the exponential function. 
He conjectures tha t  if E~, . . .  , Ek are nonzero expressions in ~ such tha t  the set 
{El, . . .  , Ek ,  iTr} is linearly independent over the rationals, then the set {exp (El),  
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• . . ,  exp (Ek), x, ~-} is algebraically independent over the rationals. Using this 
conjecture he shows that  there exists a normal form f for $ that  maps each expres- 
sion into an equivalent expression of the form 

g(exp(E1), - - .  , exp(Ek), x, ~-, oo,,) 
h(exp(E1),  - - .  , exp(Ek), x, ~-) ' 

where 
(i) g and h are relatively prime polynomials over the rationals, 

(ii) the degree of g in ~,, = exp (i .  7r/2m) is less than the degree of the minimal 
polynomial for o0,~, 

(iii) E1, - . .  , Ek are distinct normalized expressions, and 
(iv) the s e t /E~ ,  " '" , Ek,  iTr} is linearly independent over the rationals. 
Richardson [16] has also proved a theorem that  is somewhat similar to Theorem 

4 and to Brown's theorem. He considers the class of expressions S generated by 
(i) the rationals and ~-, 

(ii) the variable x, 
(iii) the operations of addition, subtraction, multiplication, division, and com- 

position, and 
(iv) the exponential, sine, cosine, and log Ix I functions. 
THEOREM. Given an expression E in $, a finite sequence E 1  , " ' "  , E k  o f  S-ex- 

pressions can be found such that i f  r is any rational number and I is any interval 
containing r on which E ( x )  is totally defined, E ( x )  = 0 on I i f  and only i f  E ( r )  = 
El(r )  . . . . .  Ek(r)  = O. 

However, no method is known for deciding, in general, whether E(r )  = O. 
Whether  or not such a method exists is an open question. 

5. Conclusion 

In summary our knowledge of the boundary between decidability and undecid- 
ability is as follows. Without  resorting to conjectures, the smallest class of ex- 
pressions for which a negative result holds is ~. The largest class for which a positive 
result holds is FOE. 

However, subject to a number of plausible conjectures, we can bring the boundary 
into much sharper focus. Consider the class ~2 for which we have a negative result. 
If the absolute value function is removed from ~2, one has a restricted case of 
Brown's positive result. If the sine function is removed, a class of polynomials 
extended by absolute value remains. In this case the immediately preceding theorem 
of Richardson implies the existence of a normal form. 

Theorem 4 gives us our most general canonical form. 

Appendix. Backus-Naur Form Definitions for Classes of Expressions 

G E N E R A L  D E F I N I T I O N S  

( n o n z e r o  d ig i t )  : :  = 1121314151617t819 
(digi t}  : :  = ( n o n z e r o  d ig i t )  I 0 
( p o s i t i v e  i n t e g e r )  : :  = ( n o n z e r o  d ig i t )  I ( p o s i t i v e  i n t e g e r ) ( d i g i t )  
( i n t e g e r )  : :  = 0 I ( p o s i t i v e  i n t e g e r )  I - ( p o s i t i v e  i n t e g e r )  
( r a t i o n a l )  : : = ( i n t e g e r )  I ( i n t e g e r )  / ( p o s i t i v e  i n t e g e r )  
( v a r i a b l e )  : :  = x 

Journal of the Association for Computing Machinery, Vol. 17, No. 2, April 1970 



On Canonical Forms and Simpli f icat ion 395 

DEFINITION OF THE CLASS (R 

(a primary) ::  = (rational) Iv[ log 2 ] (variable) I ((~)) I sin ((~}) I exp ((~)) Iabs ((~)) 
(~ term) :: = (~ primary) I (~ term) * (~ primary) 
(~) : :=  (~ term) I(~)  + (~ term) 

Note. abs ((~}) is also deno t e d  ] (~} I where  "1" is an  abso lu t e  va lue  bar .  

DEFINITION Of THE F O E  CLASS 

(FOE argument primary) :: = (rational)]i  I (variable) [ ((FOE argument}) 
(FOE argument term) :: = (FOE argument primary) ](FOE argument term)* (FOE argu- 

ment primary) 
(FOE argument) :: = (FOE argument term) I (FOE argument) ~ (FOE argument term) 
(FOE primary) :: = (FOE argument primary) I ((FOE)) l exp ((FOE argument)) 
(FOE term} :: = (FOE primary) I (FOE term) * (FOE primary} 
(FOE) :: = (FOE term) [ <FOE) + (FOE term) 
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