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aBsPrRACT. Letd be an integral domain, ®(J) the integral domain of polynomials over . 1
P, Q € ®@) withm = deg (P) > n = deg (@) > 0. Let M be the matrix whose determinar
defines the resultant of £ and Q. Let My be the submatrix of M ¢btained by deleting the las
j rows of P eoefficients, the last j rows of @ coeflicients and the last 2j-}-1 columns, exceptin
column m -+ n — 1 — § {0 < 4 < j < n), The polynomial 8;(x) = 2.iq det (My)x! is the jt
subresullant of P and @, R being the resultans, If b = £(@), the leading coefficient of @, ther
exist uniquely R, 8 € ®(d) such that pm+"P = Q8 + R with deg (R) < n;define §U(FP, Q) = §
Define P, € ®(F), T the quotient field of 4, inductively: P, = P, Pa=§, Py=®R(P., P
Pie = GUP,; , Pm)/c,'z*'"1+1 for i > 2 and ng > 0, where ¢ = £}, n; = deg (P) an
Si=m; — M. P, Py, o, Pr,for k> 3,1 called a reduced polynomial remainder sequénce
Some of the main results are: (1) P, € @) for 1 < 7 S k5 (2) Pi = £ Ay -1, wher
Ap = [, @y chortp, o AR, (4) Ry = 0 for my < § < my — 1. Takin
4 to be the integers I, or ®#r{I), these results provide new algorithms for coinputing resultant
or greatest common divisors of univariate or multivariate polynomials. Theoretical analysi
and extensive testing on a high-speed computer show the new g.e.d, algorithm to be faste
than known algorithms by a large factor. When applied to bivariate polynomials, for example
this factor grows rapidly with the degree and exceeds 100 in practical cases.

1. Introduction

L.et g be an integral domain, ®{4) the integral domain of polynomials with co
efficients in 4. Small lotters g, b, ¢, -+ - are used for elements of 9, capital letter:
P, 0, R, - for elements of ®(9) and x, y, --- for variables. As is well known, il
deg (P) > deg (@) > 0, thereexist o = 0, b # 0, § and & such that af’ =
Q8 + bR and deg (R) < deg (). Say that R is a remainder of £ modulo §. Two
polynomials U7 and V arc called associates in case there exist ¢ = 0 and d ## {
such that cl/ = 4V, and we write I/ ~ V. A remainder E is unique to within
associates. In fact, more generally, if P ~ Py, € ~ € and R is a remainder of P
module , then B ~ R; if and only if R; is a remainder of £ modulo ¢ .

We say Py, Py, ««-, Pp (k = 3) is a polynomial remainder sequence (p.r.s.) if
P.is is a remainder of P; modulo Py for 1 £ 7 £ k& — 2; it is complete in case
deg ( P.) = 0. The zero polynomial is assumed to have degree 0. Clearly, deg () >
deg (P3) > «++ > deg {P) 2 0. For any I, and P, with deg (P,) 2 deg (Pa) > 0,
there exists a complete prs. Py, Py, -+, Py IE Py, Py, -+, Prand @1 ,Q;, -+, &
are complete p.r.s.’s with Py ~ @, and P; ~ @y, thenk = rand P;~@;for 1 <i¢ < k.

For any P € ®(4), denote by £(P) the leading coefficient of P (if P = 0,
we set £(P) = 0). Let m = deg (P), n = deg (), m = n > 0, and define
p(P, Q) = R, where R(z) = £(@)-P(x) — £(P) 2" "-Q(x). Inductively, definc
p'(P, Q) = Pand p"'(P, Q) = p(p'(P, Q), Q). Since deg (o(£, @) < deg (P),
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there exists a least positive integer & such that deg (s*(P, Q)) < deg (Q). We
call k the rank of P over @ and write & = »(P, @). Clearly, #(P, Q) <m —n + L.
Set (P, Q) = o"(P, Q), where k = (P, @); then, by induction on k, there exists
S such that £(Q)* P = @S + &(P, Q). Call ®(P, Q) the Euclidean remainder of
P modulo @ A prs. Py, Py, -+, Pyis Euclidean in case Piy = ®R(P;, Piyy) for
1<i<k— 2

Let P(z) = D roaz’, Q(z) = X i-oba’, and let M be the matrix whose de-
terminant defines the resultant of P and @; i.e., M is the following m-+n by m-+n
matrix:

ir(l,m Am-—1 - . . . . . ay Qg 0 . ] 0.{
0 am ... : S A a 0 0
H 1
| . . . . .
0 0 . OGm Gl (2 . . .o.oar @ l
bn bn—.l . . b1 bo 0 . . . . . N 0 0 f
0 be . . by b by 0 0
L S o
w0 Lo . . « by baet buz . . by b

M is called the Sylvester matriz of P and Q. Let M ;; be the submatrix of M obtained
by deleting the last j of the n rows of P coeflicients, the last j of the m rows of @
coefficients and the last 2j-+1 columns, excepting column m -+ n — 7 — j, for
0 < i < j < n. The polynomial R;, defined by Rj(z) = D iodet (M)z', is
called the j-th subresultant of P and @, for 0 < j < n. Notice that deg (R;) < 7,
and R is the resultant of P and Q.

Let Py, Py, -+, P: be a Euclidean p.r.s. with deg (P;) = n;. Let E; be the
jth subresultant of Py and P, . In [1] it was shown that P; is an assoeiate of By, 1,
and, in fact, explicit expressions were obtained for elements ¢ and b of 9 such that
aP, = bR, ,_:, these expressions being products of powers of the leading co-
efficientsof Py , Py, -++ , Pry . Aprs. Py, Py, -+, Prisregular in case r(P;, Piy1)
= deg (P;) — deg (Pyi.) for1 < 2 < k — 2; it is normal in case deg (P;) —
deg (P;y1) = 1for 2 < ¢ < k — 1. From the definition of rank, we see that every

regular p.r.s. is normal. We also obtained in [1] the corollary that if Py, P2, -+, P
is a regular Euclidean p.rs., then P, = *c¢R,,_, 1, where ¢ is likewise explicitly
given as a product of powers of the leading coefficients of Py, Pa, -+, Pra .

These results established clearly that, excluding certain exceptional cases, the
Euclidean algorithm in this form methodically introduces certain extraneous con-
stant factors (i.e., powers of the leading coefficients) at a very rapid rate, and is
therefore inefficient. The results also engendered some speculation in [1] as to
how best to circumvent this source of inefficiency. Two possible methods were
proposed, criticized and dismissed. Another method was suggested uncritically
but apprehensively.

By methods of proof similar to those used in [1], we obtain in the present paper
two new theorems on p.r.s. Theorem 1 pertains to what will be called a reduced
p.r.s., this being a p.r.s. produced by a modification of the Euclidean algorithm of
[1}. In this modification, we discard the notion of rank and in place of the function
®, we use ®. We define &( P, Q) as the unique R such that, for some S, e(@Q)".p
= Q-8 4+ R and deg (R) < deg (Q), where m = deg (P) > n = deg (@) > 0.
In addition to this change, we divide each remainder, Py = ®(P:, Piy1), beginning
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with ¢ = 2, by £(P:)™""™". The theorem shows these divisions are always
possible, and that the resulting p.r.s. bears a remarkably simple relationship to
the sequence of subresultants. Indeed, Py = ==dl., ,1 and again d is explicitly
given as a product of powers of the leading coefficients of P, Py, -+, Pry;
if Py, Py, -+, Pyisnormal, thend = 1.

As a corollary of Theorem 1, if Py, Py, - -+, Piis any p.r.s., then P;is an associate
of Rn;_,— for i > 2, and moreover every subresultant is either zero or is an asso-
ciate of some R, 1. We, therefore, set Sy = Py, S; = Pyand S; = R,,_
fori > 3andn.y > 0,and we call Sy, S2, S5, - -+, Sk a subresultant p.r.s. Theorem 1
provides an algorithm for computing the reduced p.r.s. P1, P2, - -+, P; and from
it the subresultant p.r.s. Si, Sz, -+, Se. Theorem 2 provides an algorithm for
generating the subresultant p.r.s. directly. More specifically, one computes S,
as R(S: , Sir) -@i/b; , where a; and b; are products of powers of £(8Sz), - -+, £(S5).

The algorithms provided by these theorems and their corollaries for operations
in ®(9) are applicable whenever we have algorithms for operations in the integral
domain 4. One significant example (indeed, the one which motivated the investiga-
tion) is obtained by taking ¢ to be go, the integral domain of the integers; or the
integral domain, do[z: , * - -, #.) (or, what is essentially the same, ®"(9o)), of n-vari-
able polynomials with integer coefficients. The algorithms are useful for computing
resultants and greatest common divisors of polynomials with integer coefficients
in any number of variables.

The g.c.d. (greatest common divisor) algorithm provided by Theorem 1 (the
reduced p.r.s. algorithm) has been programmed for the IBM 7094 computer and
applied to numerous polynomials in one and two variables. For comparison, three
other polynomial g.c.d. algorithms were also programmed for the same computer
and applied to the same polynomials. Of these three, one is the commonly used
Euclidean algorithm, one is the ALpax algorithm (used in the AurAx system and
described in [2]) and the third, the primitive p.r.s. algorithm, is a simplified but
superior version of the ALrak algorithm.

The results of these tests are reported in Section 3. In brief, the Euclidean
algorithm is so inefficient that it is unusable except for univariate polynomials of
degree 10 or less. Among the other three, the reduced p.r.s. algorithm is two to
six times faster than the others for univariate polynomials. For bivariate poly-
nomials, the situation is quite different. The reduced p.r.s. algorithm rapidly
becomes 100 times faster than its competitors, the ratio increasing rapidly with
the degrees of the polynomials.

2. Theoretical Results

Before starting Theorem 1, let us make more precise the definition of a reduced
p.r.s. Recall from Section 1 the definition of ®(P, Q). Let F be the quotient field of
g. Let Py, Py, -+, Py be a pr.s. with elements P; € ®(F). Py, Py, -, P
is said to be a reduced p.r.s. when Py, Py € ®(8); P; = &(P1, Py); and Py =
R(P;, Piyr)/cd =" for 2 < 4 < k — 2, where ¢; = £(P:), n: = deg (P;) and
8; = ni — Nipr . Actually we show (Corollary 1.1) that every element P; of a re-
duced p.r.s. belongs to ®(9), but this does not follow immediately from the def-
inition and so we temporarily consider p.r.s. over ®(F).

As an aid in proving Theorem 1, we now establish some conventions relating
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matrices and polynomials. Let A be any matrix with r rows and 2 columns, » < s.
We define a function & such that @(4) is a polynomial P with deg (P) < s — 7.
Let A be the square submatrix of A obtained by deleting all of the lagt s — 7 + 1
golumns of A, excepting column s—4, for 0 < 7 < s — 7. Then P is the polynomial
Plz) = 2isodet (A2’ We call P = @{A4) the associated polynomial of A,

Now lef M be the Sylvester matrix of the polynomials P and @, with deg (P) = m
and deg (@) = n. Let M; be the submatrix obtained from M by deleting the last
jrows of P, the last § rows of @ and the last j columns. M;hasm 4+ n — 27 rows and
m 4 n — J columns, and the result of deleting from M; all of the last j-+1 columns,
exeepting column m + n — 7 — 4, is the submatrix M;; which was used to define
the jth subresultant, B, , of P and Q. It follows that B; = &(M,).

If A i a matrix with 1 row and s columns, A = (a1, -« , @), then it can be seen
that @(A) = P, where P(z) = 2 i ¢,_&". We are thus led to associate with any
r by & matrix also the sequence of polynomials (P, -+ ; P.), where P; = @(4.),
A, being the 1th row of A. Weset @*(4) = (Py, -+, P,). Of course, 4 is uniquely
determined by @*(4), given the number of columns in A. As an example, let I be the
polynomial 7(z) = 2. Then the Sylvester matrix, M, of P and § can be described by
e*(M) = (I"™P,I"°P, -~ ,P,I"7Q, 1", - - ,Q).

In the following we denote by 8;( P, ) the jth subresultant of £ and Q. We now
prove the following lemma. ‘

Levmal. LetPy, P, -, Prbeareducedp.r.s. Letc; = £(P;) andn; = deg (F;)
for1<i<k Letsw=—londdi=ni—nipforl i<k -1 Lell<i < k— 2
Then,

((I) S,{Pi , Purx) = ( _1)(ﬂi—f')Cm+l—J') . 055£—1+1)("i+l_j) _c“_“éii"f"l)(ﬂn-l IR TS S F
‘8i(Pipr, Pia) Jor 0 £ 7 < nyga;

(b) Sj(Pi , PH—I) - ( _1)(5.‘+1)5¢'+1 _C$i+l(6i—l+1) . G::;.m“—n ~c§:},§‘_1 '-PH—2 fm'
J = Nz

() 8(Pi, Pin) = (=1 Pyy forj = non — 1

(4 8;(Ps;, Pi) =0 forng <j<nmp-—1 )

Proor. Let M; be the matrix with @*(M;) = (I[P, e Tip,
Pi, I P, TV P, -++, Pit), so that 8;{P:, Pia) = G(M;). By the
definition of a reduced p.r.s., it Py = Puyr-Qi + ¢~ Py for some poly-
nomial @, (including the case ¢ = 1,since & = ~1). Sincenye < ny, it follows that
n; = deg (Pia-Qi) = nip + deg (@s). Hence, deg (&) = & and P:a-Q: s a
lincar combination, with coefficients in 4, of Piy, TPy, <+, 1 %P . More
generally,

St B Hgr
i TPy = I'Pi-Q: + ¢ T - Py,

and I'P;,1-Q: is a linear combination, with cocflicients in 4, of I'Pipy, [ P,
e, I'YPoy . All of these polynomials occur in @*(M;) provided r > 0 and
T+ 8 <ng—j—1ie,0<r <nyy —j— 1. Hence, if we multiply each of the
first .., — j rows of M, by ci%" and subtract from each a suitable linear combina-
tion of the last n; — 7 rows, we obtain the matrix M ; such that

% 8¢y p—i1 S iHlpnig— 2 iyt
@ (.Zl’j]’) — (Ci‘ H‘Iﬂl-}l J-PH_Q,C{‘ 1 I 4l P‘,+2, . ,Cf‘ PH.-E,
i f]
I P"Jrl} '”:P‘H-l)-

If we now multiply each of the first neg — j rows of M J by ¢;%=""", we obtain M

Journsl of the Aesociation for Computing Msehinery, Vol. 14, No. 1, Jannary 1967



132 GEORGE E. COLLINg

with @* (M) = (I"*7 7 Pis, -+, Puya, "7 "Pua, -+, Pip). Now re.
” " * " ai—i—1l g

arrange the rows of M;" to produce M;", where @™ (M;") = (I" 7 Pia, -, Pay,

e #p o ooo ) Pus). By the derivation of M~ from M;, we have

(—1)®? (i y1=9) = Gi ) (i) D Mi=D g 1r Y = @(M[]”). (1)

We now consider the four cases of the lemma. Suppose first that j < n... . Let M,*
be the matrix obtained from M ,-'” by deleting the first n: — n.9 = 8; + ;11 rows
and columns. Clearly G(M;*) = 8;(Piu, Piyz) and a(M;") = Cfﬁs"“ﬁ(M,-*),
since the first §; + 841 diagonal elements of M ;" are cq1 and only zeros occur below
these diagonal elements. Combining this with (1), and using @(M;) = 8;(P;, Piy),
we obtain (a).

Now assume j = nye . Then

deg (I"i“ﬂ;lPiH) = (Nipr — J — 1) 4+ nge = Nepa — 1,
and hence M,” is a triangular matrix whose first n; — j diagonal elements are ¢y,
and whose other nyyy — 7 diagonal elements are ci2 . Hence
Q(M,") = cHi'clis T T Pus = it T Poys
Setting j = nye2in (1), we have

PRSCIE S TR ~(8; —1-F1)8; (8;+1)8; ” 6;+8;¢ 8¢ 41—1
(1) iR TSPy, Pi) = Q(M;) = ¢ e T Py

Since (~— l)(s"'f'&"“)ﬁ"“ = (—-I)O”'H)&“'1 and s + 5£+1 - (51 + 1)5;4_1 = —'5;'(51;{.1 - 1),
we obtain (b). '

é;sesumej = Py — L. The/n @*(M,") = (I Py, -+, Piya, Piys). Hence
M;" is triangular and @(M;"”) = c}ii'P. . Setting j = flar — lin (1), we have

(=1 S0 8,(Pe, Pin) = QM) = clii'Pua,

from which (¢) is obtained.

Finally, assume 742 < 7 < n4q — 1. Then
deg (I"*" 7Pia) = nipt —j — 1+ noa = (Raps — 1) + (nige — J) < g —1,

and nya—j > 1. Hence, M,” is triangular and the (n; — 7 + 1)-th diagonal element,
which is not the last, is zero. So @(M,”) = 0. Then, by (1), @(M;) = 0, estab-
lishing (d).

Lemma 2. Let Py, Py, --- | P, be a reduced p.r.s. Let ¢; = L(P), n; = deg(P)
and & =i —niy . Let 2 <r <k — 2and set o, = D121 (ns — §)(Naps — 5), where
0 <7 < fgr. Then

§j(P1 , P2) — (___1)"'r ':H c;‘vss_x(ﬁi—'l)] cr—(ﬁr_1+1)(m+1~f)sj(Pr Pr+1).
=2 ’
Proor. Setting 7 = 1 in Lemma 1 yields
$i(Py, Py) = (—1)m 20 @ittt g p, py.
Since —(d1+1)(ma —5) + 8+ 8 = — (84 1)8 — (8 + 1) (ng — j) + 60+ 8 =

—8:(8 — 1) — (8 + 1)(ns — 7), this proves Lemma, 2 for r = 2. Assume Lemma?
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holds for 7 and that v + 1 < k — 2. Using Lemma 1 with 4 = r, we have

7

§{(Pi, Py = (=1)7 [H c?“*“f*”] G Gl P Py

i=2

r
—Hny 1~ by {1y
— (“i,)n+(nr 2Ry [H & 41083
=2
_C—(ar._ri'l)(ﬂrq.]—‘f)'{"(af_]_‘f'l) (ﬂr+1—j)
r

—(8p 1) Ry oy D818
“Crp1” e ’ r+l'§5(PT~H: Pr—+-2).

Since
o + (nr — ) (Rpt — J) = orpa
and
=& + 1)y —J) F 8+ S = —(8 4 1)dgs — (& + 1) (Rpz — )
8 b = —8(bes — 1) = (b + D){nrge — ),

this shows Lemma 2 holds for #+-+1. By induction, this completes the proof of
Lemma 2.
TrrorEM 1. Let P1, Py, -+, Py be o reduced pas. Let ¢; = &(P), n; =
deg (Pi) and §; = n; — iyl » The’n
(a) 8u(Pr, Po) = (— 1)'”[Hf:; ;G R-TE phere o = 3 ok NNyt
+ (4 E)ne
(b) Sm_nlPr, Pa) = (—D™MI[ZE ™1 where 7 = 2058 navin +
(m + k) + 1);
(e) 8(Pi,Pa) =0 forme <j<mpy— 1
Proor. If &k = 3, these results follow by setting « = 1 in Lermoma 1; hence we
may assume k > 4. Setting» = k — 2andj = n, in Lemma 2, we obtain
k—2

S (P15 Pz) = (=1 [H "‘5"““"'“]cﬁ‘—?*“*“‘““sn,,(PH, Piy),

]

where
k—3
@ = 2 (n = m)(nia — ma).

=1

Setting 7 = k — 2 in (b) of Lemmna 1, we obtain

ot b1 by (g —al) —Dg_9(dp_y—1) Si_1~1
snk(Pk—ﬂng—l)=(_1)(kg )8k 1ehagt Cp-etl) o0 2 (k1 ckk1 P, .

Combining these two equations results in
k~1

(i, P) = (~1)- [ 11 076"""“”} SR

=2

where
8

= ; (n: — e} (Rep — Nz) b (Bre + 1)50x .
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Using “=" to denote congruence modulo two,

k—3
o) = Z (ni — Tiz{g)(’fb,‘.{.], — nk) -+ (51;_2 + ak—l)‘sk—l
=]

&2
y (ne — 1) (msga — )

Hit

==

] b2 h—2

= Z Rt + M Z g -+ M Z;,ﬂw-l + (k h 2)1"!1:
i=1 i=1 i=
k2

k-1
= lnmm + ne(r + e + 5) = Z;ln-;nm + (ng + k)ar = ok,

fo

proving (a).
Setting r = k — 2 and j = npy — 1 in Lemma 2, we have

e

S t(P1, ) = (“Uﬁ [111 ﬂrai"ltﬁiul)] C;—(gkgsﬂlr‘i’nkﬁl—l(f)k_z ; Pk-1),
=

where
k—3

g = _Zl (1 — 21 4 1) (g — g + 1),
Setting i = &k — 21in ( ¢) of Lemma 1, we have
Smsct(Pros, Par) = (— 1) Mgty "Py
Combining these two equations results in (b) except with
k—3
B = Zl (ni — Mg + V)0gpy — mpa + 1) + o2 + 1
=

in place of 7 . However,
k=3

By = zlnm¢+1 4 Oty =+ 1)y + npa) + (b — 3 (e + 1) + Mz + 1 + 1

k=2

ijlnmm o+ gy 4 g+ e + (B4 Di(nges + 1) + 5pe + (7 + 1)

(i

k—2

= Z;lnmm D+ E+1+1) =7,

proving (b).

Assume 7y < § < M — L. By Lemma 2, with r = k& — 2, $;(Py, £5) ~
8;(Pi_s, Psy) and by (d) of Lemma 1, with 7 = k — 2, $;(Pes, Pia) = 0,
proving (c).

Corotrary 1.1, Let Py, Py, -+, Py be a reduced pr.s. Then P; € ®(g) for
1<iLk

Proor. By induction on k. For & = 3, the corollary holds by the definition of a
reduced p.r.s. Assume it holds for &, and let P, Ps, - -+, Pra be a reduced p.r.s.
Then Py, Py, -+, Py is a reduced p.r.s. so, by hypothesis, Py, Py, ---, P €
®(d). Henee, ¢y , ¢z, -+, & €£4. By (b) of Theorem 1,

Pl
Pry = = [112 Gg"“l(a"ﬂ)] Sup—1( Py, Pa).
=
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Bub Su— & ®(9), and 8208 — 1) 2 Ofor 2 < i < k — 1. Hence Pry € @(4).

Conortany 1.2. Let Py, Pz, -+ -, Pi be a complete reduced p.r.s. Then every non-
sero subresultant of Py and Py is an associale of some P .

Proo®. Let ${Pi, F:) be any nonzero subresultant. Then ny = 0 < § < na.
Henee, for some 4, 3 < ¢ <k, % <j < ny. Now apply Theorem 1 with k& =1.
By (¢) of Theorem 1, j = ni0rj = n;0 — 1, since $;( P, P2} # 0. Hence, by (a)
and (b) of Theorem 1, 8P, Py) ~ P,

Cororrany 1.3. Let Pi, Ps, -+, P, be a normal reduced p.v.s. Let Py, Ps,
8z, -+, Sk be a subresullant p.r.s. Let ny = deg (P;). Then Py = (—1)fminatg,

Proor. By definition of a subresubtant p.r.s., Si = 8u,_,a(P1, Pz). By nor-
mality, 8, = 7; — nya = Lfor 1 <4 <k — 1. Now apply (b) of Thearem 1, noling
that nae is oven for 1 < ¢ < k — 2 and that ny = %2 — (k — 3).

CoronrAny 1.4. Let Py, P, ---, Py be a normal complete reduced p.r.s. Then
P, is the vesultant of Py ond Ps .

Proor. Apply (a) of Theorem 1, noting that each & = 1, each nai Is even
and . = 0.

Theorem 1, part (b), provides an algorithm for computing any term, Sy , of a sub-
resultant pors. Py, P, 8s, -+, 8e, -+ . Namely, onc may compute the reduced
p.rs. Py, Pa, oo+, Prand then divide P, by (—1)™- E 1Y, However, we
now seek to obtain a direct method for computing the subresultant p.rs., i.e., a
method which provides a formula for 8, in terms of Py, Pz, 83, -+, S without
recourse to the reduced p.r.s. To this end the following lemma is first proved.

Levma 3. LetPy, Do, -+, Pibeaprs.in®(F). Let¢; = £(Py), ni= deg (P,
51' = ¢ — N1 Let P;; = (_1)31_@(13] R Pg) G,’Rd

Pia = (=D [ 11 d] G, Pan),
Fe=l

for 2 < ¢ < kb — 2, where the ¢; and fi; are arbitrary integers. LetPy Py, Ss, -, 8
be o subresultant p.a.s. Let

k—2 -3
ge = El Miliss + (nl + k}(nk—l - 1) -+ Z:; 6~;(?’L{+1 - Npa + l)
and
r—2
ha = 8a(8; — 1) + Z fi( g — e 4+ 1)
i
Then

—a
Po = (—1)% [_II } S \

=3

Proor. By generalizing the proof of Lemma 1 to apply to the prs.
Py, Py, -+, Py of the present lemma rather than the reduced p.r.s., we obtain in
place of (a) of Lemma 1 the following:

S;;( P, , P-Er}»l) = ( _1)(ﬂi“3‘)(n£+ \—dtesng g1

. G‘Eﬁ;_ (NI TS c:ial5+l)(ﬂi+1*f)+5i+5i+l (2}

i —(niqp1—3) ) N .
. I:H c{;?:] -53;( P’H-l , P.;_*.g) tor 7 < Tirn
p—2
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Similarly, in place of (¢) we obtain:
P —1
31'([)1‘ , Pi+1} — ( __1)5;'14-#131' _c?i—r*'l. [IIQ c;l'pjl 'Pl'-‘r-ﬂ for .7 = Ryr — 1, (3)
o=
Now we carry out an induction as in Temma 2 and obtain;

"
Sj(Pl , PE) - ("‘"1)“" [H C:&gul(ﬁ.ml)] _C:'(S,._1+13(n,._;_;v;')
=2

r—1
: [:H CFE;:})‘F"(“H' l_ﬂ] '51'(1)1' y Pr+1) (4)

=8
for 2<7r<k—2 and 5 < mey,

where

-1

r—1
gy = ZE; {ne — §) (i — 7) + ;es(nm — 7).

Asin the proof of (b) of Theorem 1, we now set7 = & — 2in (3andj=n,4—1
and r = k — 2in (4), obtaining:

k2 -1
Snk_l—l(Pk—i , Pk—l) — ( __ 1)5):-—21'1"‘“0};.-2 . c;:k__zﬂ-l_ [H c{k-.-z.-':l .P, ; (5)

2=

o
_ —Fs PR — _

Sk = (h_l)v‘k 2, [I I & t-1(8; n]'ekj-gk FENS]

i=g
T (®)
k=S pii g a—np D)
'[I. [ efimilinieimnis ] “8m1-1(Pas, Pa),
=
where

k—3

k=
Gpp = £§ (i — e+ D{ngs — 2ea + 1) + Z_;lei(ﬂm = g+ 1).

Combining (5) and (6) and simplifying the exponent of —1, modulo 2, yiclds
the conclusion of Lemma 3.

We now seck to so determine the e; and fi; of Lemma 3 in such a way that the
prs. Py, P:,---, P, of Lemma 3 coincides with the reduced p.r.s.

P1, Py, 8, -, 8, if possible. A sufficient condition for this coincidence is, by
Lemma 3, that
r—2
gr = Enmm + ( + ) (A — 1)
r—2

+ ‘Z;e;(nﬁ.l —fy1+ 1) =0(mod 2) for 3<r <k
and
r—2
Bir = 8a(8s — 1)+ X filnga —ma + 1) =0 for 2<i<r — 25k-2
=%

Setting gs = 0 we have nine + (1 + 8)(n2 — 1) + e(ng — ma + 1) = 0 and
hencee; = n; + na + I = & + 1. Now we natice that Gril — fr = Np_ghiy + 73bea
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4 e ‘j‘ we 4+ 1 275;%95&4 + €.1. Hence if gr = o1 = O then e, =
fal 2 imier + o on, o) 4+ L Sefting v = 3 in this formula, we oblain
a=b(b+1lta+n+3) +1l=8n+n) +1=8641=4a7+ L Sini-
larly, setting 7 = 4 we obtain e; = & + 1. 8Set ¢; = 8, + 1 for all 2. Then

ge = (my + v) (Mg — 1} + ; i + (8 + 1) (i — ney + 1))
= (ﬂl + T)(nr_l ‘+‘ 1) + 2;;_ [’n—i(nrAi -+ 1) '+‘ ('n,-.,.l + 1)(71,@_;“1 + Nry + 1)]

r—2

= (m+r)(n + 1) + ; (n: 4 iy + D (fey + 1)

= (ma + 1>[£m F ) T Ot e+ 1)]

= (et D42+ 0+ na + 1) = (R + Doy = 0.

We now make a similar determination of the f; . Setting r = 7 4 2, we obtain
higpz = 8i1(8i — 1) + fi:. Hence ki ja = O implies fi; = —8,4(8; — 1). Setting
P=1 + 3, we obtain h-,;,;:.H; = 57;"1(5,: b 1) +fi7;(_5;'+1 + 1) +f|'+|,,i ' HE:IICE h;‘,&,‘,a =
bijpz = 0implies firy s = —8ia(8c —~ 1) + 8ea(8e — 1) (s + 1) = 8 1(8: — 1)duas .
Similarly, setting r = ¢ + 4, we obtain §;(8 — 1) + fildus + Sie + 1) +
fs+1,i(5£+2 + 1) +f-i+2.z‘ = 0)

fing = —8:a(8; — 1} + 8:a(ds — 1)(8en + 42 + 1) — 8:0(8i — )6eya(disa + 1)
= §ialdi — 1)(~1 + 8upa + diga + 1 — Bizabive — Sia)
= =8 a(8 — 1)}($i1 — 1o .

Assume fi; = —8.4(8: — 1) and fiym = (~ 1" [T15577" (8 — 1)) 6iym . Then,
as shown above, h; 542 = 0. Assume by, = G andr > 7 + 2. Then

r—32 r—5
hirir = by 4 by iji + frai = 8 Zf:’i + frai.
=t =i
However, one can easily show by induction that
r—2
Br1 Efji + fra,i = 0.
7=t

Hence hi»a = 0 and, by induection, b = 0 forall» 2 ¢ 4 2.

This completes the proof of the following theorem.

Theonem 2. Let Si, 8, -, 8 be a subresultant pr.s. Let ¢, = £(8),
ni = deg (8:), 8 = i — Nip1 - Sebfu = —8ca(d: — 1) and fors = (—1) oy
QI (8~ 1)) bspr, fori> 2, v > landi+r <k — 2. Then

8y = (~1"R(8:, %),
and
Bitg = (—~1)"" [II c’;"'] TR R(8, Sin)
=9

for2 <4<k — 2.
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3. G.C.D. and Resultant Algorithms

As already mentioned, Theorem 1 provides new algorithms for computing resultangs
and greatest common divisors of polynomials in any number of variables with eq.
efficients from any integral domain g, provided, of course, that we have availabls
algorithms for the arithmetic operations in go. If r+1 is the number of variables
then in applying Theorem 1 we rewrite our given polynomials as univariate poly.
nomials in one variable with coefficients which are r-variate polynomials and take
g = ¢ (9o) in Theorem 1. Although other choices are undoubtedly of interest, in the
present paper we consider (with the exception of a few remarks) only the case where
9y is the Integral domain of the mtegers.

First, consider algorithms for g.c.d. calculation. Let P(z1, -+ -, 2., ¥) be a poly.
nomial with integer coefficients in »+1 variables, r 2> 0. Let

P(xl’...’xryy) = ;Ai(xly”'yxr>'yi.

Applying induction on 7, we may assume that we can compute A4 = ged
(Ao, Ay, -+, Ay), since for » = 0 we have the familiar Fuclidean algo-
rithm for computing the g.c.d. of integers. 4 is the content (with respect to y)
and we write 4 = cont (P). We can then compute P = P/A. We call P the primi-
tive part of P (with respect to y) and write P = pp(P). P is prémitive ( with respect
toy), i.e., any common divisor of its coefficients Ao, A1, - -+, A, (A = Ai/A) isa
unit of o[y, - -+, &) = @ (o). Of course, the only units of ®(4,) are 1 and —1.

Now let @1, Q2 be nonzero elements of ®*(d,) and suppose we wish to compute
Q) = ged (@1, Q). First compute 4; = cont (Q;) and P; = pp(Q.), for i = 1, 2;
then 4 = ged (4,1, As). It now suffices to compute P = ged (Py, P;) since
@ = A-P,and we know that P is primitive. Let n; = deg (P;). Since ged ( Py, Py)
= ged (Py, Py), we may assumen; > n, . We may also assume ny > 0 since other-
wise PP = 1. Now let Py, Py, ---, P, be any complete p.r.s. The standard proof
(see, for example, [3, Ch. XVI]) easily generalizes to show that P = 1 if P, 5 (,
and P = pp(Pr) if P, = 0.

We thus obtain, for each specification of an algorithm for computing a complete
p.rs. Py, Py, -« | Py starting with given primitive polynomials P; and P, , aged
algorithm. We now consider four such g.c.d. algorithms. Perhaps the most natural,
most obvious and most commonly used algorithm is the Euclidean algorithm, ob-
tained by taking Py, Py, -, P to be the Euclidean p.r.s., generated according to
its definition.

Nowlet Py, Py, - -+, Py be a primitive p.r.s. which begins with Py , P , i.e., a p.Is.
in which each P; is primitive. We distinguish two algorithms depending on how
such a prs. is generated. The simplest generation method is given by
Pipp = pp(®(P;, Pi1)). We call the resulting g.c.d. algorithm the primitive p.s.
algorithm.

In the ALpak system [2], the successive terms of a primitive p.r.s. Py, Ps, -+, s
are generated in the following more complex way. The operation p of Section 1 is re-
placed by an operation 5. Let m = deg (P) > n = deg (@) > 0, a = £(P),
b:—- £ (Q_).Leté)c:= ged (a,b),@ = a/e,b = b/e. Then 5 (P, Q) = pp(bP — al™™"qQ).
Now define (P, @) = P and, inductively, 5™ (P, Q) = 5(p(P,Q), Q). Then
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Puz= 5 (Pi, Piyt), wherek = 7{P;, Piy1), and this describes the method used in
Arpax. The g.c.d. algorithm so obtained will be called the Arpax algorithin,

The fourth g.c.d. algorithm is obtained by taking Py, P, -+, Pi to be the re-
duced p.r.s. which starls with £,, Ps, generated according to its definition, and
we vall this the reduced p.r.s. algorithm.

Iach of these four algorithms has been programmed for the IBM 7094 computer,
within the framework of the PM polynomial manipulation system [4], and hence their
implementations do not differ in any essential details. Each algorithm was applied
to a set of 7 pairs (Py, Qu), + -+, (Pr, @) of univariate polynomials and a set of 5
pairs (By, Ss), -+ -, (B:, 84) of bivariate polynomials, each algorithm being applied
to the same polynomials (except that some algorithras were too inefficient to do
some problems in & reasonable amount of time), Each P, , and each Q. , is a poly-
pomial of degree 5% with random integer coeflicients of two decimal digits, Le.,
chosen at random (with uniform distribution) from the set {»: {n| < 99}. BEach
E:, and each S, is a polynomial of total degree k with random one-decimal-digit
coefficients. Thus Ri(z, ¥) = 2 seio0yzy’, with a; € {n: {n] < 9}, has
(k + 1){k + 2)/2 terms (a few of which may happen to be zero). Not surpris-
ingly, each pair proved to be relatively prime.

Table 1 gives the computing time required by each algorithm to compute the
g.c.d. of each pair of polynomials to which it was applied.

We now add a few remarks tending to explain and interpret these results as well
as to provide a basis for extrapolation.

Assume the Euclidean algorithm is applied to two univariate polynomials Py and
Py, both of degree n, whose coefficients are approximately d decimal digits long,
and assume further that the Euclidean p.x.s. PPy, Py, - -+, Pp 1s regular (which ex-
perience shows to be the typical case). Then the coeflicients of P will be approxi-
mately 2d digits long, those of P, approximately 3d digits long (since r(Ps , Ps) = 2),
those of Ps 124 digits long and so on. In general, if the coefficients of P, are u;
digits long, then approximately %2 = 2w: + u;. Hence, approximately, u; =
(14 V2! d, 14 +/2 being the dominant root of z* = 2z + 1. Thus, for the
Euclidean algorithm, the lengths of the coefficients increases exponentially and
henee so does the computing time, a similar but more complex analysis applying
for multivariate polynomials. We estimate that the computing time in Table 1 for
applying the Euclidean algorithm to the univariate polynomials of degree 15 would
be of the order of one week, and would produce integers about one million decimal
digits long!

Tor the other three algorithms the situation is entirely different. Let P and P; be
univariate polynomials of degree n with integer cocfficients not exceeding d
decimal digits. Let P1, P2, 83, - - , Sk be a subresultant p.r.s. for Py and P» . Each
coefficient of S, is the determinant of a matrix of order 2(n — ms1 -+ 1), each
clement of which is a coefficient of Py or Pa . By Hadamard’s Theorem {5, pp. 78~
79], the absolute value of this determinant docs not exceed 1Tk
(2(n — mg_y + 1))* ™', Thus the coefficients of S; are at most (n — ey + 1)-
(2d + logio 2(n — 7 + 1)) decimal digitslong. If Py, Py, ---, P, is the cor-
responding primitive p.r.s., the same bound applies to the coefficients of Py , since
8, = P, for some integer a; . As already noted, both the ALpak algorithm and
the primitive p.r.s. algorithm compute the primitive p.r.s., but in different ways.
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TABLE 1. Compuring Trmes 1N MINUTES

R Reduced
Euclidean ALPAK Primitize FESE

Degree algorithm  algerithm algPD':;'f}&??l algorithm

Univariate Polynomials

5 .0034 .018 .009 0043

10 .94 .15 .064 .023
15 .51 .22 077
20 1.19 .51 .21
25 2.29 1.06 .43
30 3.81 1.79 .78
35 3.25 1.48

Bivariate Polynomials

3 .30 .02 .015
4 7.03 .35 .062
5 4.29 .23
6 .67
7 1.81

The Avpax algorithm computes more g.c.d.’s of coeflicients, presumably in an at-
tempt to reduce the size of coefficients of intermediate polynomials computed be-
tween successive terms of the primitive p.r.s. The experiments reported in Table 1
strongly indicate that this extra effort falls far short of being adequately compen-
gated, particularly for multivariate polynomials.

When P; and P; have a normal p.r.s., these same coefficient bounds apply to the
reduced p.r.s. since then, by Corollary 1.3, the reduced p.r.s. and subresultant p.r.s.
agree except for signs. For a nonnormal p.r.s. these coefficient bounds do not apply,
and at present we have no theory to indicate that the reduced p.r.s. algorithm
would still be more efficient than the primitive p.r.s. algorithm. We have, however,
accumulated considerable experimental evidence that, in practice, deviations from
normality are both rare and small (say in the sense that the expectation of -
2425 8:4(8: — 1) is small). For this reason, we have not at this time programmed
the algorithm provided by Theorem 2 for computing a subresultant p.r.s.

While there is reason to believe that nonnormal p.r.s.’s oceur infrequently, the
existence of nonnormal p.r.s’s is an entirely different matter. In fact, if
T, e, v oo, M 1S any sequence of integers satisfying ny > ny > ng > -+ > my > 0,
there is a p.r.s. Py, Py, --- , Py such that deg (P,) = n, for 1 < 1 L k. For, let
8 = n; — nyyy and let Qi be any polynomial of degree 8, 4(2 < 1 < k — 1). Also,
let Pyy and P, be any polynomials of degrees n,_; and ny , respectively. By in-
duction on <, define P,_; = Piii@i—its + Prips (for2 < i < k — 1). Assuming,
by induction, that deg (Pr_iy1) = mp_iys and deg (Pi_izs) = mMu_ipe, we have
deg (PioiynQrin1) = deg (Pispa) + deg (Qemiv1) = Mpipr + Goi = My >
deg (Pi-:i2), and hence deg (Pr—i) = deg (P ;1Q:; 41) = mg_;. Hence
PPy, .- Prisaprs A p.r.s. constructed in this way is artificial, however, in
the sense that the remainder equations a;P; = PiaQiya + biPyys are all satisfied

wit'h a: = b; = 1. We do not know how to construct s p.r.s. with arbitrarily pre-
seribed n; for which this is not so.
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Another theoretical problem relating to p.rs. caloulation is the extent to which
the subresultant p.rs. can deviate from the corresponding primitive p.r.8., where
Prand Py wre primitive. In this connection, note that sinee £(Py) and L(Ps) are
the only nonzero elements of the fivst column of the Sylvester matrix of Py and s,
any common divisor of £(£1) and £(P;) is a divisor of each subresultant of Py and
Py . Cousideration ol other eolumns leads to similar observations. Apart from this
remark, this appears to be a question about which lLittle is known. The available
experimental evidence indieates, however, that the deviation is ordinarily so small
that the reduced p.r.s. algorithm is faster,

Since each pair of polynomials represented by Table 1 is relatively prime, one
may ask whether a similar comparison would result for pairs which are not relatively
prime. The answer is no. The data so far collected is too scanty to inelude, but it
indicates that as the g.c.d. inereases in degree the primitive p.r.s. algorithm im-
proves relative to the reduced p.r.s. algorithm and may even be slightly faster in
extreme cases. This slight advantage in these cases would seem to be far from ade-
quate, however, to compeusate the primitive p.r.s. algorithm for its relative in-
efficiency in the other cases.

The section of Table 1 applying to univariate polynorials displays well the de-
pendency of computing times on the degree n of the initial polynomials. It is possible
to give an argument supporting the view that this dependency can be approximated
by a polynemial in n of degree 4 (this applies o all except the Euclidean algorithm ).
Table | does not, however, indicate the dependency of computing time on d,
the number of decimal digits in the coeflicients of the nilial polynomials { for fixed
n). This dependency can he approximated by a quadratic polynomial in . For
example, application of the reduced p.r.s. algorithm with n = 15 resulted in com-
puting times of .077, .18 and .53 for d = 2, 4 and 8, respectively.

Suppose one wishes to compute the g.c.d. of univariate polynomials, Py and Py ,
with elements of B, the field of rational numbers, as coefficients, Since R is a field,
there is essentially only one prs. Py, P, --., P, with elements P, in ®(R).
It one computes this p.r.s. in order to obtain the g.e.d. of Py and Py, there are two
cases according as one does or does not represent each rational number with rela-
- tively prime numerator and denominator. In the first case the number of g.e.d.’s
of integers computed is far larger than in the use of the Arrax algorithm, and the
computing time is correspondingly large. In the second case, on the other hand,
the integers clearly grow exponentially as in the Fuclidean algorithm. It seems
clear, therefore, that the recommended procedure is to replace P, aud P, with
primitive associates, I’y and P, , with integer coefficients and apply the reduced
prs. algorithm. A similar analysis applies to multivariate polynomials with ra-
tional coefficients.

Finally, a few remarks arve added with regard to the reduced p.r.s. algorithm for
computing the resultant B of polynomials Py and P, (with respect to the main
variable). One computes the complete reduced p.rs. Pi, Pa, -+, Pr. Then, by
Theorem 1, part (a), =R is obtaived by dividing Pi*-' by [[[i= ¢li-*®~0),
since Py = ¢z . It is clear that the coraputing time ig the same as in the redueced
prs. ged. algorithm, except that in computing the resultant some additional
time is required for the terminal division whenever the resultant is nonzero (P,
and P, have no common factor of positive degree in the main variable) and the
p.r.8. ig nonnormal.
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In this connection, however, it should be mentioned that Williams [6] Proposesg
(translated into our terminology) computing the complete Euclidean p.r.s. Py | P, .
-+, Py as ameans of obtaining the “eliminant” of Py and P, . It is not clear whethes x:
Williams realizes that this “eliminant” may differ essentially from the resultan ¢,
In any case 1t seems desirable to point out that his Theorem IV [6, p. 32] is false
Translated into our terminology, it states the following: Let Pi(w1, -+, @, y) .
Pow, s @m, y)y o0y Pralm, <o+, @,y 9), Pk(xl; “re, ) be aCOmpleté
Euclidean p.r.s. with respect to the main variable y. Let o, -+ | a,, 8 be
complex numbers such that Pilay, -+, om) = Pralon, <+, am, 8) = 0 ang}
Pﬂ(al) Ty am)y) # 0. ThenPl(a17 T am:B) = P2<a1: T am,ﬁ) = Ci
A simple counterexample is obtained by taking m = 1, Pi(z,y) = zy° + 2+ 1,
Py=ay +y+2 o=0andp = 1. Then Py(z, y) = ay + 2 — 2, k = 4
and Pi(z) = 2° — 22 + 32 — 2°. The erroneous proof apparently assumes that
Pilay, yam,y)y Palon, -+ yam,y), ++ ,Pilar, ++, am) s a p.r.s., an asswmp -
tion which can be realized if we add the hypotheses Ai(ai, -+, an) % 0, for
2<1<k—1,where Ai(ay, - - - , ) is the leading coefficient of Py(w1, « -, @,y .
This error, together with the impracticality of computing a Euclidean prs.,
vitiates much of the content of [6].
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